811 research outputs found

    Genetic divergence in Northamerican freshwater planarians of the Dugesia dorotocephala group (Turbellaria, Tricladida, Paludicola)

    Get PDF
    The genetic differentiation between the members of the Dugesia (Girardia) dorotocephala group was analyzed by means of multilocus electrophoresis, and comared to that of another planarian secies, D. tahitiensis, also belonging to the subgenus Girardia. The species examined were: D. dorotocephala s.s (2n = 16), D. arizonensis (2n = 8), D. jenkinsae (2n = 8), and the above mentioned D. tahitiensis (2n = 16). The former three species inhabit North America, and show different proportion of fissiparous and sexual individuals; the latter species inhabits Polynesia and is fully asexual. A total of 11 enzyme loci were genetically analyzed: Mdh-1, Mdh-2, Zdh-1, Idh-2, G3pdh, Got-1, Ck, Pgm-2, Ada, Mpi, and Gpi. Low values of observed mean heterozygosity per locus (Ho) were found in the populations studied, ranging from 0 to 0.18 (average 0.08. In asexual populations (except that of D. tahitiensis) fixed heterozygosity was observered in all the individuals for 1 or 2 loci. The genetic divergence between the species examined is very high, with many loci showing discriminating alleles in different taxa (Nei's genetic distance varies from 0.871 to 1.759). The populations of D. dorotocehala s.s., on the contrary, appear to be genetically quite homogenous average D= 0.019), and the genetic distance values are apparently unrelated to their geographic location and to their way of reproduction. The genetic distance between D. tahitiensis, a species not included in the D. dorotocephala group and D. dorotocephala s.s. is 1.314 and hence similar to the D value between two members of;he dorotocephala group: D. dorotocephala and D. jenkinsae (D = 1.303). The genetic relationships among the populations studied were established by UPGMA cluster analysis and multidimensional scaling. The descendence of the North American species with 2n = 8 from a dorotocephala-like ancestor with 2n = 16 is considered. It is suggested that the latter, as well as a tahitiensis-like line, also having 2n = 16, have originated from a common ancestor by geographic isolation

    Heat shock protein 90 is associated with hyperplasia and neoplastic transformation of canine prostatic epithelial cells

    Get PDF
    Heat shock protein 90 (HSP90) is a molecular chaperone that regulates critical signalling proteins of cancer development and progression. Abnormal levels of HSP90 have been observed in human prostatic carcinoma (PC), with prognostic and therapeutic implications. Since spontaneously arising canine PC is a valuable model for the human disease, the aim of this study was to evaluate the immunohistochemical expression of HSP90 in two normal canine prostates, 17 canine prostates with benign prostatic hyperplasia (BPH) and five canine prostates with PC. HSP90 was expressed in the cytoplasm of epithelial cells in all samples, with a significant increase in labelled cells in PCs. Nuclear labelling was observed occasionally in normal tissue, but was increased in BPH and PC. HSP90 immunoreactivity in preneoplastic lesions (proliferative inflammatory atrophy and prostatic intraepithelial neoplasia) was similar to that in PCs. Increased HSP90 expression in canine PCs suggests the involvement of this molecule in carcinogenesis and tumour progression, supporting HSP90 as a potential target for therapeutic intervention

    Linking the proximal tibiofibular joint to hominid locomotion: A morphometric study of extant species

    Get PDF
    Objectives: We perform a comparative assessment of shape variation of the proximal fibula in extant humans and great apes, intending to investigate the possible link between proximal fibular shape and locomotor patterns.Methods: Our sample includes 94 fibulae of 37 Homo sapiens, 15 Gorilla, 17 Pongo, and 25 Pan. Fibular morphology was investigated through three-dimensional (semi)landmark-based geometric morphometric methods.Results: We found unique features of the human fibular head compared to that of great apes (i.e., oblique articular surface, the presence of the styloid process, specific morphology of muscle attachment sites), supporting the functional role of this bone in relation to human obligate bipedalism. Great apes also showed distinctive traits in their proximal fibula morphology, in agreement with differences in locomotor behavior.Conclusion: The morphology of the proximal fibula in extant humans and great apes is indicative of locomotor behavior, offering the potential for the comparative analysis of fossil hominin remains

    The role of the capping agent and nanocrystal size in photoinduced hydrogen evolution using CdTe/CdS quantum dot sensitizers

    Get PDF
    Hydrogen production via light-driven water splitting is a key process in the context of solar energy conversion. In this respect, the choice of suitable light-harvesting units appears as a major challenge, particularly as far as stability issues are concerned. In this work, we report on the use of CdTe/CdS QDs as photosensitizers for light-assisted hydrogen evolution in combination with a nickel bis(diphosphine) catalyst (1) and ascorbate as the sacrificial electron donor. QDs of different sizes (1.7-3.4 nm) and with different capping agents (MPA, MAA, and MSA) have been prepared and their performance assessed in the above-mentioned photocatalytic reaction. Detailed photophysical studies have been also accomplished to highlight the charge transfer processes relevant to the photocatalytic reaction. Hydrogen evolution is observed with remarkable efficiencies when compared to common coordination compounds like Ru(bpy)32+ (where bpy = 2,2′-bipyridine) as light-harvesting units. Furthermore, the hydrogen evolution performance under irradiation is strongly determined by the nature of the capping agent and the QD size and can be related to the concentration of the surface defects within the semiconducting nanocrystal. Overall, the present results outline how QDs featuring large quantum yields and long lifetimes are desirable to achieve sustained hydrogen evolution upon irradiation and that a precise control of the structural and photophysical properties thus appears as a major requirement towards profitable photocatalytic applications

    Feulgen-DNA Content and C-Banding of Robertsonian Transformed Karyotypes in Dugesia Lugubris

    Get PDF
    SUMMARYIn the planarian species, Dugesia lugubris, two biotypes are found: E (2n = 8, n = 4) and F (2n = 6, n = 3); on the basis of karyometric studies it has been hypothesized that the second was derived from the first through a Robert-sonian mechanism of centric fusion. The quantitative cytochemical data reported here confirm the hypothesis of karyotype evolution, since there are no significant differences between the DNA content of the nucleus in the two biotypes. The regenerative blastemas of both biotypes contain a number of cellular populations with a variable Feulgen-DNA content; these correspond to successive doublings of the 2C diploid content. In addition, metaphase plates with multistranded chromosomes have been found. A difference between the chromosome C-banding in the two biotypes has also been observed

    Buffer breakdown in GaN-on-Si HEMTs: A comprehensive study based on a sequential growth experiment

    Get PDF
    Abstract The aim of this work is to investigate the breakdown mechanisms of the layers constituting the vertical buffer of GaN-on-Si HEMTs; in addition, for the first time we demonstrate that the breakdown field of the AlN nucleation layer grown on a silicon substrate is equal to 3.2 MV/cm and evaluate its temperature dependence. To this aim, three samples, obtained by stopping the epitaxial growth of a GaN on Silicon stack at different steps, are studied and compared: Si/AlN, Si/AlN/AlGaN, full vertical stack up to the Carbon doped buffer layer. The current-voltage (IV) characterizations performed at both room temperature and high temperature show that: (i) the defectiveness of the AlN nucleation layer is the root cause of the leakage through an AlN/Silicon junction, and causes the vertical I-V characteristics to have a high device-to-device variability; (ii) the first AlGaN layer grown over the AlN, beside improving the breakdown voltage of the whole structure, causes the leakage current to be more stable and uniform across the sample area; (iii) a thick strain-relief stack and a carbon-doped GaN buffer enhance the breakdown voltage up to more than 750 V at 170 °C, and guarantee a remarkably low device-to-device variability. Furthermore, a set of constant voltage stress on the Si/AlN sample demonstrate that the aluminum nitride layer shows a time dependent breakdown, with Weibull-distributed failures and a shape factor greater than 1, in line with the percolation model

    3D enamel thickness in Neandertal and modern human permanent canines

    Get PDF
    Enamel thickness figures prominently in studies of human evolution, particularly for taxonomy, phylogeny, and paleodietary reconstruction. Attention has focused on molar teeth, through the use of advanced imaging technologies and novel protocols. Despite the important results achieved thus far, further work is needed to investigate all tooth classes. We apply a recent approach developed for anterior teeth to investigate the 3D enamel thickness of Neandertal and modern human (MH) canines. In terms of crown size, the values obtained for both upper and lower unworn/slightly worn canines are significantly greater in Neandertals than in Upper Paleolithic and recent MH. The 3D relative enamel thickness (RET) is significantly lower in Neandertals than in MH. Moreover, differences in 3D RET values between the two groups appear to decrease in worn canines beginning from wear stage 3, suggesting that both the pattern and the stage of wear may have important effects on the 3D RET value. Nevertheless, the 3D average enamel thickness (AET) does not differ between the two groups. In both groups, 3D AET and 3D RET indices are greater in upper canines than in lower canines, and overall the enamel is thicker on the occlusal half of the labial aspect of the crown, particularly in MH. By contrast, the few early modern humans investigated show the highest volumes of enamel while for all other components of 3D enamel, thickness this group holds an intermediate position between Neandertals and recent MH. Overall, our study supports the general findings that Neandertals have relatively thinner enamel than MH (as also observed in molars), indicating that unworn/slightly worn canines can be successfully used to discriminate between the two groups. Further studies, however, are needed to understand whether these differences are functionally related or are the result of pleiotropic or genetic drift effects

    UNCERTAINTY VISUALIZATION APPROACHES FOR 3D MODELS OF CASTLES RESTITUTED FROM ARCHEOLOGICAL KNOWLEDGE

    Get PDF
    In the cultural heritage field, several specialists like archaeologists, architects, geomaticians, historians, etc. are used to work together. With the upcoming technologies allowing to capture efficiently data in the field, to digitize historical documents, to collect worldwide information related to the monuments under study, the wish to summarize all the sources of data (including the knowledge of the specialists) into one 3D model is a big challenge. In order to guarantee the reliability of the proposed reconstructed 3D model, it is of crucial importance to integrate the level of uncertainty assigned to it. From a geometric point of view, uncertainty is often defined, quantified and expressed with the help of statistical measures. However, for objects reconstructed based on archaeological assumptions, statistical measures are not appropriate. This paper focuses on the decomposition of 3D models into levels of uncertainties (LoUs) and on the best way to visualize them through two case studies: the castle of Kagenfels and the Horbourg-Wihr Castellum, both located in Alsace, France. The first one is well documented through still ongoing excavations around its remains, whereas the second one disappeared under the urbanization of the city. An approach enabling, on the 3D models, not only to quantify but also to visualize uncertainties coming from archaeological assumptions is addressed. Finally, the efficiency of the approach for qualifying the proposed 3D model of the reconstructed castle regarding its reliability is demonstrated
    corecore