54 research outputs found

    Conditions for efficient charge generation preceded by energy transfer process in non-fullerene organic solar cells

    Full text link
    The minimum driving force strategy is applied to promote the exciton dissociation in organic solar cells (OSCs) without significant loss of open-circuit voltage. However, this strategy tends to promote F\"orster resonance energy transfer (FRET) from the donor to the acceptor (D-A), a consequence generally ignored until recently. In spite of the advances reported on this topic, the correlation between charge-transfer (CT) state binding energy and driving force remains unclear, especially in the presence of D-A FRET. To address this question, we employ a kinetic approach to model the charge separation in ten different D/A blends using non-fullerene acceptors. The model considers the influence of FRET on photoluminescence (PL) quenching efficiency. It successfully predicts the measured PL quenching efficiency for D or A photoexcitation in those blends, including the ones for which the D-A FRET process is relevant. Furthermore, the application of the model allows to quantifying the fractions of quenching loss associated with charge transfer and energy transfer. Fundamental relationships that controls the exciton dissociation was derived evidencing the key roles played by the Marcus inverted regime, exciton lifetime and mainly by the correlation between the driving force and binding energy of CT state. Based on those findings, we propose some strategies to maximize the quenching efficiency and minimize energy loss of OSCs in the presence of D-A FRET.Comment: 44 pages, 10 figures, 3 table

    Assessment of Phosphorus Input from Urban Areas in the Passaúna River and Reservoir

    Get PDF
    Elevated phosphorus loads play an important role in the deterioration of water quality and can subsequently pose a threat to the aquatic organisms in a river or a standing water body. The accurate assessment of total phosphorus (TP) fluxes from a catchment is of high importance to the well-being of the entire river ecosystem. In this study, we assessed the yearly input of TP from the urban areas of the Passaúna catchment in southern Brazil. The catchment drains into the eponymous reservoir, which provides drinking water for more than 800,000 inhabitants of the Curitiba Metropolitan region. The protection of the water quality in the river as well as in the reservoir is of paramount importance, yet high phosphorous inputs have been detected. For adequate protection, the catchment emissions need to be accurately assessed. Initially, the TP concentration in the river sediment was determined in order to assess the relationship between the TP export of the urban areas and the TP stock of the river. It was found that in areas with a higher share of urban land cover and especially in areas with a lack of sewage treatment, the TP concentration in the sediment reached up to 6700 mg/kg. The assessment of the overall TP input from urban areas was based on a regionalized emission-modeling approach, combined with data from long-term water quality monitoring of the river. The monitoring station established upstream of the Passaúna Reservoir inflow provided an initial assessment and the necessary output for the validation and calibration of the model. From the drainage basin of the monitoring station, an overall TP input of 2501 kg/a (0.31 kg/(ha a)) was measured between 1 May 2018 and 1 May 2019 (3508 kg TP/a or 0.23 kg/(ha a) when extrapolating the overall catchment of the Passaúna Reservoir). The monitoring data indicated that the TP input increases during the wet months of the year. The sediment stock of the river also plays an important role in the interannual budget of TP. During the timespan of one year, many deposition–resuspension events happen. The resuspended material is included in the baseflow and hinders the differentiation between urban and nonurban input. After calibration, the model was able to predict the yearly input of TP from the urban areas of the Passaúna catchment. In addition, the share of inhabitants who are not connected to the sewer system was assessed. Overall, the combination of monitoring and modeling in this study offers a valuable overview of the TP dynamics of the system, while the model ensures reproducibility with high accuracy at the same time

    Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules

    Get PDF
    We report the stability test results of ITO-free OPV modules using roll-to-roll printed silver nanowire networks as front electrode.</p

    Comparing C-60 and C-70 as acceptor in organic solar cells : Influence of the electronic structure and aggregation size on the photovoltaic characteristics

    Get PDF
    The difference in aggregation size of the C-60 and C-70 fullerenes affect the photovoltaic performance of devices assembled in the so-called bilayer architecture with poly [2,7-(9,9- dioctyl- dibenzosilole)- alt-4,7- bis(thiophen-2-yl)benzo- 2,1,3- thiadiazole] (PSiF-DBT) as the electron donor material. Despite the better performance of the C-70 devices, which is related to the high absorption coefficient in the visible range and the superior charge transport properties, the short-circuit current variation upon annealing treatment at 100 degrees C is approximately twice bigger when the C-60 is the acceptor. We attribute this effect to the tendency of C-60 in form smaller aggregate domains relatively to the C-70. The increased roughness on the polymeric surface after annealing results in an enhanced donor/acceptor contact area and assists the fullerene diffusion deeper inside the polymeric layer. This effect leads to a better mixing between donor and acceptor species and create a interpenetrating layer close to the so-called bulk heterojunction. Since C-60 forms smaller aggregates, this mechanism is more pronounced for this molecule. Therefore, a significant variation in the performance of the C-60 devices is observed after this kind of treatment. Density Functional Theory calculations of the potential energy of interaction between two fullerene molecules and X-Ray measurements gives evidences to support this idea. In addition, combining spectrally resolved external quantum efficiency measurements with optical modeling our results also indicate the occurrence of the bilayer interfacial mixing for PSiF-DBT/C-60.Peer reviewe

    Solar Cell Cracks and Finger Failure Detection Using Statistical Parameters of Electroluminescence Images and Machine Learning

    Get PDF
    A wide range of defects, failures, and degradation can develop at different stages in the lifetime of photovoltaic modules. To accurately assess their effect on the module performance, these failures need to be quantified. Electroluminescence (EL) imaging is a powerful diagnostic method, providing high spatial resolution images of solar cells and modules. EL images allow the identification and quantification of different types of failures, including those in high recombination regions, as well as series resistance-related problems. In this study, almost 46,000 EL cell images are extracted from photovoltaic modules with different defects. We present a method that extracts statistical parameters from the histogram of these images and utilizes them as a feature descriptor. Machine learning algorithms are then trained using this descriptor to classify the detected defects into three categories: (i) cracks (Mode B and C), (ii) micro-cracks (Mode A) and finger failures, and (iii) no failures. By comparing the developed methods with the commonly used one, this study demonstrates that the pre-processing of images into a feature vector of statistical parameters provides a higher classification accuracy than would be obtained by raw images alone. The proposed method can autonomously detect cracks and finger failures, enabling outdoor EL inspection using a drone-mounted system for quick assessments of photovoltaic fields.</p

    A Photovoltaic Module Diagnostic Setup for Lock-in Electroluminescence Imaging

    Get PDF
    Electroluminescence (EL) imaging and infrared (IRT) thermography techniques have become indispensable tools in recent years for health diagnostic of photovoltaic modules in solar industry application. We propose a diagnostic setup, which performs lock-in EL for accurate analysis of different types of faults occurring in a solar module. The setup is built around a high-speed SWIR camera, which can acquire images at very short integration time (1μs) and high frame rate (301 fps). In addition, a state-of-the-art imaging chamber allows for introducing controlled levels of ambient light noise for developing new light noise removal methods, rotation of panel frame in 3 axes plane for developing perspective distortion correction techniques. The paper also gives an insight of different system and communication delays that affects the performance of overall EL lock-in imaging system integration. The purpose of the diagnostic setup is to support research in PV failure quantification through EL imaging, which can also be useful for aerial drone imaging of PV plants.</p
    corecore