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Abstract: A wide range of defects, failures, and degradation can develop at different stages in the 

lifetime of photovoltaic modules. To accurately assess their effect on the module performance, these 

failures need to be quantified. Electroluminescence (EL) imaging is a powerful diagnostic method, 

providing high spatial resolution images of solar cells and modules. EL images allow the 

identification and quantification of different types of failures, including those in high recombination 

regions, as well as series resistance-related problems. In this study, almost 46,000 EL cell images are 

extracted from photovoltaic modules with different defects. We present a method that extracts 

statistical parameters from the histogram of these images and utilizes them as a feature descriptor. 

Machine learning algorithms are then trained using this descriptor to classify the detected defects 

into three categories: (i) cracks (Mode B and C), (ii) micro-cracks (Mode A) and finger failures, and 

(iii) no failures. By comparing the developed methods with the commonly used one, this study 

demonstrates that the pre-processing of images into a feature vector of statistical parameters 

provides a higher classification accuracy than would be obtained by raw images alone. The 

proposed method can autonomously detect cracks and finger failures, enabling outdoor EL 

inspection using a drone-mounted system for quick assessments of photovoltaic fields. 

Keywords: electroluminescence imaging; photovoltaic modules; defect classification; micro-cracks 

(mode A); cracks (mode B and C); finger failures; pixel intensity histogram; statistical parameters; 

machine learning classifiers 

 

1. Introduction 

With the significant increase in the necessity of photovoltaic (PV) energy generation to curb 

climate change, the installation of large PV plants has grown significantly in the last decade [1]. As it 

is desirable to operate these plants at their maximum capacity, monitoring the performance of the 

installed PV modules is critical [2]. 
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Cracks in solar cells have received significant attention in the last years [3]. Cracks are often 

classified into three modes: micro-cracks (Mode A) and cracks (Mode B and C) [4]. Generally, a micro-

crack Mode A does not have a significant impact on the output power. The loss due to the impacted 

cell area is relatively low, as long as the different regions are electrically connected [4]. However, 

cracks (Mode B and C) do affect the power output of the PV module. Cells with Mode B cracks exhibit 

an increase in resistance and lower voltage in the cracked regions [5], while cells with Mode C form 

a wholly isolated and electrically disconnected cell area. In some cases, cracks (Mode B and C) lead 

to reverse biasing of the solar cell [6]. In others, 16–25% of the cell area can be separated by cracks 

parallel to the busbars [7]. The cracks can form due to mechanical stress during transportation or 

manufacturing installation and maintenance of the modules [7]. A brief classification of the different 

crack modes is provided in Reference [8]. 

Another common extrinsic fault type is finger interruptions, usually induced during cell 

metallization and module interconnection. Finger breaks often result in increased series resistance 

and, consequently, decreased output power [9,10]. 

Electroluminescence (EL) imaging has become an indispensable tool for distinguishing various 

types of failures and different degradation mechanisms with high resolution [11]. EL imaging is 

based on biasing the modules and measuring the emitted emission, which correlates with the 

radiative recombination of carriers within the device [12]. As the local luminescence intensity is 

related to the carrier concentration, faulty and disconnected regions appear darker, depending on the 

severity of the fault. EL imaging has been used to detect a wide range of defects, such as micro-cracks 

and cracks, finger interruptions, ribbon damage, and many more [3]. EL imaging can also quantify 

power losses and the percentage of disconnected regions due to the gap between cell parts and cracks 

by modifying the bias current [6,13]. Analyzing EL images is typically time-consuming [14] and 

requires expert knowledge regarding the different defects. It is, therefore, expensive to perform on a 

large scale [15]. One possible path to improve the analysis is using machine learning (ML) to detect 

different defects more accurately. A recent advancement has meant outdoor PL images could be 

obtained by switching the operating module condition through modulating the shading on three cells 

connected to three different bypass diodes using a high-power light-emitting diode (LED) array. PL 

has an additional benefit over EL, as it is a contactless technique, and therefore does not require a 

qualified electrician to change any wiring of the inspected PV system [16]. 

ML uses predictive or descriptive algorithms to optimize a performance model using a given 

dataset [17]. The models are built based on the available data to make predictions without being 

explicitly programmed to perform the task [18]. This study investigates the use of machine learning 

(ML) to classify the defects mentioned above.  

Recently, different ML algorithms have been used to classify various degradation types in EL 

images. Fada et al. used a supervised ML algorithm to classify a database of 14,200 images into three 

labels: good, busbar corrosion, and cracked [15]. They used three ML algorithms [support vector 

machine (SVM), random forest (RF), and multilayer perceptron-artificial neural network (MLP-

ANN)] and compared their performance. The cracked cells’ classification accuracy was relatively low, 

especially compared to the good and corroded groups, possibly due to the unbalanced dataset (as 

most cells did not have any fault). Karimi et al., who manually categorized the database into four 

labels: good, cracked, cell edge darkening, and heavily busbar corroded, later extended their study 

in Reference [19]. They used an unsupervised clustering technique to correlate intrinsic patterns in 

the images with the supervised labels. The method is based on binary classification (‘degraded’ and 

‘non-degraded’ cells), achieving a mean accuracy of 98.9% and 98.2% for SVM and convolutional 

neural network (CNN) ML algorithms. Additionally, several automated fault detection methods have 

been proposed [20–22]. Sun et al., achieved an overall prediction accuracy of 98.4% using 2000 

training steps (25 epochs) [20], while Tseng et al., employed a binary clustering of features to detect 

only finger interruptions. However, it seems challenging to detect defects with more elaborate 

structures due to shape assumptions [21]. SVM and RF classifiers were evaluated in Reference [22] 

using two cell region extraction algorithms. The study focused on the cracked and faulty region's 

geometry to distinguish it from a healthy area. Another approach that integrates mini-batch k-means 
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with state-of-the-art clustering CNN has been proposed [23]. The method uses a feature drift 

compensation to reduce errors caused by a feature mismatch. The technique demonstrates a high 

accuracy and can efficiently compute millions of images, outperforming existing state-of-art 

clustering methods [14]. A different approach that uses an independent component analysis (ICA) 

has been demonstrated to achieve a 93.4% accuracy with a relatively small training dataset of only 

300 solar cell images [24]. However, material defects such as finger interruptions are treated equally 

to cell cracks. Moreover, an algorithm using anisotropic diffusion filtering to locate micro-cracks in 

polycrystalline solar cells is described in Reference [25]. The method precisely detected the micro-

cracks with an accuracy and sensitivity of 88% and 97%, respectively. 

Recently, deep learning-based approaches have been suggested for classification [26–30]. A pre-

trained visual geometry group (Vgg)-16 CNN network architecture combined with an SVM decision 

layer was used to classify different faults, achieving 90.2% accuracy [26]. The work was later extended 

in Reference [27] by developing an enhanced CNN model proposing an algorithmic solution, which 

extensively evaluated the model performance using different inputs (dataset sizes, learned features, 

conventional solution, and more). The study demonstrated efficient defect detection of faults, 

achieving a mean accuracy of 97.9%. A transfer learning-based solution was proposed by Ding et al. 

[28], which can identify visible defects in large-scale PV plants and distributed rooftop systems. The 

study uses an enhanced CNN-based model for classification, reaching a 98.9% mean accuracy. A 

visual defect detection method based on multi-spectral deep CNN has also been proposed [29], 

achieving an overall defect-recognition accuracy of 94.3%. The effectiveness of a data augmented 

method, auxiliary classifier-progressive growing generative adversarial networks, was evaluated 

using three selected CNN models [30]. It has been shown to improve the classification accuracy 

maximum by 14% in the material defect category compared to a more traditional data augmentation 

approach. 

In this study, we use extracted statistical parameters from the image histogram as a feature 

descriptor. The vector is then fed into different ML classifiers to distinguish between various defects. 

We demonstrate that processing the images into a feature vector of statistical parameters has a 

significant advantage over the standard methods that use many features.  

2. Methodology 

In this study, 753 EL images of multi-crystalline silicon (mc-Si) aluminum and back surface (Al-

BSF) modules are used (~46,000 cell images). The modules are from different PV arrays installed in 

various locations across the United Kingdom (Oxford-shire, Norfolk, Hampshire, and Somerset). 

The EL images were acquired using a modified complementary metal-oxide-semiconductor 

(CMOS) camera (Nikon D750) that was modified by replacing the embedded infrared filter with a 

daylight filter (850–1700 nm). The images were acquired outdoors one hour before sunset, at 

approximately 17:00 (during August–September 2016), with a tripod holding the camera 

perpendicular to the module at a distance of 2–3 m. The exposure time ranged between 5 and 10 s, 

while the bias current was fixed at 5A. 
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Two experts in EL-based PV diagnostics then classified the cell images into three classes: (i) 

cracks (Mode B and C), (ii) finger failures and micro-cracks (Mode A), and (iii) no failures. Examples 

of the three different classes are presented in Figure 1. Finger failures and micro-cracks (Mode A), 

cracks (Mode B and C) are combined since the failures look similar in terms of structure, length, and 

intensity. More importantly, they have a similar effect on the module’s output power. Cells that 

contain more than one type of fault are labeled according to the more severe defect (i) > (ii) > (iii). The 

following image processing and machine learning part will be discussed in the section below. 

 

Figure 1. EL cell images inflicted with different faults: (A) no failures; (B) finger failures (region 

marked with light blue); (C) micro-crack Mode A (black); (D) cracks Mode B (olive green) and Mode 

C (white). 

2.1. Image Processing 

Before being used as an input for ML, the images need to be processed to correct several effects. 

The correction processes are summarized in Figure 2 and discussed below. 

Firstly, despite the effort to keep the camera in the same position compared to the module, 

variations always occur, especially when considering the measurement conditions (outdoor, evening, 

possible wind). Furthermore, as the images are taken at an angle, they are distorted. Hence, the first 

step is to correct the images for the perspective distortion [31–33] using a code developed in Matlab 

[34]. The active module area is aligned, and the perspective is fixed following the procedure of 

Reference [35], as shown in Figure 2B. The cell images are then resized from 300 × 300 to 100 × 100 

pixels to reduce computation time. They are then normalized using min-max scaling features to 

standardize the dataset for systematic analysis. Blurred images are identified using blur detection 

based on the modified Laplacian matrix technique described in Reference [36].  

An appropriate threshold value (0.80) is chosen, and EL images below this threshold are defined 

as ‘blurred’ and discarded. The module images are then segmented into cells [37]. The module and 

cell edges are computed by rotating the processed image at different angles and summing the pixel 

values along the x and y axes to locate the horizontal and vertical lines, as shown in Figure 2C. If 

distortion is identified, the images are perspective-corrected, using homography transformation 

[31,32]. Note that this is a second distortion correction for the case where the correction on the module 

level is not sufficient. Busbars are then removed from the cell images by first locating them (similar 

method to identifying the edges) and then adjusting pixel values to the neighboring pixels' mean, as 

shown in Figure 2E. 
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Figure 2. The image processing procedure used in this study: (A) acquired raw EL measurements; (B) 

the prospectively corrected normalized image; (C) busbar identification; (D) solar cell extraction; and 

(E) busbar removal. 

2.2. Machine Learning Classifiers 

Three supervised ML algorithms (SVM, RF, and k-NN) are trained and compared using the 

feature vectors (see below) and target labels [38,39]. The code was written using Python with its 

additional packages of NumPy, Pandas, sklearn, SciPy, and matplotlib [40,41]. The code can be 

shared on GitHub upon request. However, the authors would not be able to share the PI-Berlin 

dataset as it is not public. 

Support Vector Machine: SVM's core idea is finding a decision boundary (hyper-plane) that 

helps separate space vector/dataset into classes. The decision boundary is searched through the 

maximum margin classifier, which is decided by the support vectors. SVM generates an optimal 

hyperplane in an iterative manner, which is used to minimize errors. The distance between the 

nearest points is known as the margin. The hyper-plane is selected based on the maximum possible 

margin between support vectors [17,42]. A radial basis function (RBF) is used as a kernel function in 

this study, and other hyper-parameters like (penalty parameter ‘C’, gamma) are found by 

implementing a grid search to find the optimal value [43]. 

Random Forest: RF is an ensemble of ML techniques that builds multiple decision tree classifiers 

on random sub-samples of the training dataset. Each decision tree predicts the response by following 

the tree's decisions from the root to the leaf. The output of each decision tree is then averaged to 

determine the prediction [44]. RF's main advantage is leveraging the power of a large number of 

randomly selected trees to represent the solution. Thus, instead of using one decision tree, RF uses 

all the decision trees to determine the classification; this procedure reduces errors and uncertainties 

[42]. In this study, the number of trees selected was 5 and 10. The minimum number of samples that 

are required to split an internal node is set to 25. The maximum depth of the tree is kept at five [45]. 

k- Nearest Neighbors: k-NN categorizes objects based on their nearest neighbors' classes in the 

dataset, assuming the neighbor objects are similar. This non-parametric method does not make any 

assumptions regarding the underlying data distribution. Instead, it chooses to memorize the training 

instances used in the supervised training. This method's main limitation is its intensive time and 

memory requirements [17,39]. In this study, parameters are selected by implementing a grid search 

regarding neighbors [46]. 
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3. Implemented Feature Vectors and Data Labelling 

Figure 3 presents the procedure used in this study. This study's focus is on the selection of the 

feature vector (gray box in the diagram). The EL intensity of each of the pixels is used to determine 

the intensity distribution across the image. Different derived statistical parameters are then calculated 

based on the 1D pixel intensity histogram of high-resolution images (see Table A1). The proposed 

feature vector V1 contains 16 statistical parameters reducing the feature vector's dimension by 

encoding the information into a smaller latent space to remove the redundant information from the 

data. This allows an efficient and fast process compared to the traditional methods, which use the 2D 

spatial information to identify the image’s defects. Finally, the developed feature vectors (V1 and V2) 

are used as an input for the three ML classifiers, as shown in Figure 4, for classifying the defects in 

the images. 

 

Figure 3. The training procedure used in this study. 

As discussed, the defects are classified into three classes: (i) cracks (Mode B and C) (Class 0), (ii) 

finger failures and micro-cracks Mode A (Class 1), and (iii) no failures (Class 2). In total, 1385 defects 

have been identified (see Table 1). 

Table 1. Defect classification. 

Module Images Cell Images ‘Class 0’ ‘Class 1’ ‘Class 2’ 

753 45,906 756 629 44,521 

Balanced data-set 2185 756 629 800 

 

Figure 4. (A) Extracted statistical parameters (V1; 16 features); (B) combined pixel intensity histogram 

and statistical parameters (V2; 271 features) used as inputs for three ML classifiers. 
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Statistical output metrics [47] such as recall, precision, accuracy, and F1 score are defined and 

used to evaluate the algorithms [47] (see definitions in Table 2). 

Table 2. Extracted output metrics and their definition. 

Parameter Accuracy (%) Recall (𝒓) (%) Precision (𝒑) (%) F1 Score (%) 

Formulae (
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛 + 𝑡𝑛

) (
𝑡𝑝

𝑡𝑝 + 𝑓𝑛

) (
𝑡𝑝

𝑡𝑝 + 𝑓𝑝

) (2 ∙
𝑝∙𝑟

𝑝+𝑟
) 

𝑡𝑝: 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑓𝑝: 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑓𝑛: 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑡𝑛: 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

The recall metric measures the percentage of total relevant results correctly classified by the 

algorithm, while precision is the ratio between correctly labeled positive outcomes and the total 

predicted positive outcomes. Accuracy is defined as the strength of the correlation between the 

predicted and the actual labels [47]. It is given as the ratio between the number of correct predictions 

and the total number of predictions. Nevertheless, accuracy is not the best representation of 

performance on unbalanced datasets. Hence, the F1 score metric, defined as the harmonic mean of 

precision and recall, is also computed in this study. It has been shown that the F1 score is a better 

indicator when analyzing unbalanced datasets [47]. 

For the training stage, to prevent under-fitting or over-fitting, Class 2 (no failures) is 

downsampled to 2185 cell images with approximately 700 cell images of each class label (as shown 

in Table 1). The training is done on 75% of the dataset, while the remaining 25% is used to evaluate 

the algorithm on previously unseen data (validation dataset) [48]. 

4. Results and Performance Discussion 

Performance Analysis 

Figure 5 compares the F1 scores of the two feature vectors when they are used as inputs to the 

three ML classifiers (SVM, RF, and k-NN) of the validation set. The validation has been repeated five 

times to extract statistical parameters. In all cases, the proposed vector (V1) outperforms the 

combined approach (V2), achieving higher F1 scores with lower variance. Hence, it can be concluded 

that the larger number of pixel intensity features in the case of V2 (256) masks the unique features 

(16) that are used by V1, substantially reducing the performance of the ML classifiers. No significant 

difference can be observed between different ML algorithms. Note that a comparison between the 

training and validation sets indicates that the data has not been over-fitted. 

 

Figure 5. Statistical boxplot of the F1 score for the three ML classifiers. 
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Table 3 summarizes the two vectors' performance using the other output metrics: accuracy, 

recall, and precision. As can be seen, V1 performs better across all categories. We note that V1 as a 

feature vector and RF as a classifier is the best combination for performance evaluation, achieving 

99.6% accuracy. 

Table 4 compares the F1 scores obtained in this study and scores reported in the literature for 

thorough analysis. The obtained F1 scores of V1 are higher than the scores reported for the isolated 

in-depth training and transfer learning approaches [8,14]. They are also higher than those obtained 

by the Kaze/VGG feature vector combined with an SVM classifier and spectral clustering algorithm 

[14,21]. It is noticeable that our scores are similar to the best-reported scores, despite the relatively 

small dataset (2185 images) and without data augmentation. Moreover, the proposed method 

requires less computational time in terms of feature extraction and training time because the feature 

vector's size is curtailed to 16 from 256 (standard).  

Table 3. Overall results of implemented feature vectors and the different ML classifiers. 

Feature Vectors Statistical Parameters (V1) Pixel Intensity Histogram + Statistical Parameters (V2) 

ML Classifiers SVM RF k-NN SVM RF k-NN 

F1 score (%) 94.3 98.3 97.1 80.9 83.9 82.1 

Accuracy (%) 96.7 99.2 98.4 76.6 83.1 83.9 

Recall (%) 93.8 97.9 96.3 79.9 81.9 80.6 

Precision (%) 92.8 99.2 97.9 82.9 86.2 85.5 

Table 4 also summarizes the reported accuracies. This study’s obtained accuracy is similar to the 

highest reported accuracy that uses a two-image region/area detection algorithm for classification 

[22]. Despite the high overall precision, the two-region algorithm for EL cell images achieved a low 

F1 score (5.1%) and recall (27.4%) values, probably due to an unbalanced dataset. The output metric 

results can be improved by calculating the geometric mean for unbalanced class sizes. Moreover, this 

study's obtained accuracy is higher than recorded in Reference [15], which compares the supervised 

classifiers (SVM and RF) with CNN using the stochastic gradient descent method. They achieved the 

overall best accuracy, 98.77%, with the least computation time of (85.52 s) using the SVM classifier 

compared to 98.13% accuracy with (2250 s) of computation time using the CNN method. Moreover, 

Reference [19] recorded 98% accuracy computing Haralicks features as a feature vector for detecting 

different failures using an SVM classifier, as mentioned in Table 4. 

The weighted accuracy of detecting each fault class is presented in Figure 6, evaluating the 

performance for all the three individual classes independent of the number of observations considering 

a balanced dataset. Each class’s accuracy is calculated to ensure that each label is correctly predicted 

and that no specific class dominates the overall accuracy. V1 outperforms V2 in all cases, and the 

combination of V1 and RF seems to be the best across the entire validation set. It is noticeable that ‘Class 

1’ detection accuracy is lower than in the other two classes. We assume that some micro-cracks and 

finger failures are falsely predicted as ‘No failures’. The reasons for this false prediction differ between 

the two vectors. As the intensity and contrast of Class 1 are similar to healthy cells, feature vector V1 is 

less sensitive to this fault. When V2 is used, it seems that as Class 1 failures affect only a relatively small 

percentage of the acquired image, they are sometimes classified as statistical noise. 
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Table 4. Summary of the performance of various automated fault classification for EL images. 

Research 

Article 

Method 

(Vector) 
Classifier 

F1score 

(%) 

Accuracy 

(%) 
Detected Defects 

EL Cell 

Images 

(Dataset) 

This study 
Statistical 

parameters (V1) 

RF 98.3 99.6 Cracks B and C,  

k-NN 97.1 98.5 micro-crack A, 2185 

SVM 94.3 96.7 finger failures   
     Cracked, busbar  

[19] 
Haralicks 

features 
SVM 98 98.9 

corroded, edge and busbar 

darkened, 
6264 

    CNN 97 98.2     

 Spectral 

clustering 
     

[21] ROI location 
k-mean 

method 
92.1 99.1 Interrupted finger defects  ---- 

 
Stochastic 

gradient 

descent 

SVM --- 98.7   

[15] MLP-ANN --- 98.1 Cracked, corroded 14,200 
 RF --- 96.9   

            

NAG based 

learning 

Cracks (normal, linear, cross, 

flaky, broken) 

[20] CNN --- 98.4 6120 

          

Isolated deep 

learning 
[8] CNN 91.9 93 Different defects >7,872 

Transfer 

learning via t-

SNE 

Material defects, grid fingers, 

deep and microcracks, cell 

degradation 

[14] CNN 88.4 88.4 2624 

Material defects, grid fingers, 

deep and microcracks, cell 

degradation 

[14] Kaze/VGG SVM 82.5 82.4 2624 

 
Hough region 

detection 

   Cracks B and C,  

[22] SVM 5.1 99.7 micro-crack A, 47,244 

  RF 4.4 96.7 finger failures   
 

Percentile 

region detection 

   Cracks B and C,  

[22] RF 6.6 96.5 micro-crack A, 47,244 

  SVM 4.1 99.7 finger failures   

Figure 6 also displays the computed accuracy for each of the computed ML classifiers. The 

overall accuracy values (see Table 3) give an unbiased estimate for correctly predicting the images' 

actual class labels from the final tuned algorithm. It should be noted that the weighted average 

accuracy of all the classes (92.1% (SVM), 95.4% (RF), and 94.9% (k-NN)) is lower than the overall 

accuracy (96.7% (SVM), 99.2% (RF), 98.4% (k-NN)) for the V2 feature vector. It gives equal 

contributions to the three classes' predictive performance, which are independent of their number of 

observations, unlike those used to compute the overall accuracy. The V1 feature vector's overall 

accuracy indicates that the overall performance is high compared to that of the V2 feature vector, 

even though the classifiers underperform in the individual class 1 of all three classes. Furthermore, 

other output metric parameters (precision, recall, true positives, false positives and more) are 

calculated (see Figure A1) and the performance of the developed vectors are evaluated. 
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Figure 6. The accuracy scores of the developed feature vectors for the three ML classifiers. 

Figure 7 presents represented images with their actual and predicted labels. We analyze the 

falsely predicted images to evaluate the mislabels. Interestingly, many of the wrongly labeled cases 

are due to other failures (such as striation rings) that have not been classified in this study. The 

algorithms have classified these images as Class 0 or Class 1, although the actual classification (by 

the trainer) is Class 2 (no failure). This can be easily addressed by adding new classes. Other cases 

were misclassified due to a small difference between neighboring pixel values in the EL image 

identified as statistical noise. This can be improved using higher resolution images. It should be noted 

that standard deviation, inactive area, sensitivity peak, entropy, and kurtosis are the most sensitive 

parameters for Class 0 failure type. In contrast, skewness, standard deviation, and kstat parameters 

played a significant role in predicting Class 1 failures. 

 

Figure 7. Qualitative evaluation of the correct and wrong predictions based on the proposed 

algorithms actual and predicted class labels. 

5. Conclusions 

The early detection of defects as cracks, micro-cracks, and finger failures in solar cells is 

important for the production of PV modules. Analyzing EL images to locate and identify these 

failures is typically a time-consuming manual process and requires expert knowledge. 

In this paper, a machine learning-based failure identification method was presented. The 

technique uses EL images to classify three classes of faults using a feature vector based on statistical 

parameters. The feature vector has a significant advantage over the standard feature vector that uses 
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all the main output metrics. The developed feature vector achieves an accuracy and F1-score similar 

to state-of-the-art reported results despite a smaller dataset. As the proposed method requires less 

computation power and time, it will be valuable for outdoor EL inspection using intelligent 

unmanned aerial vehicles or drone-mounted systems. 
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Appendix A 

Table A1. Derived statistical parameters from the pixel intensity histogram of an EL cell image [49,50]. 

Statistical Parameters Formulae 

Cell level EL pixels 𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖) =
𝑛𝑖

𝑘

𝑛𝑘
, 0 ≤ 𝑖 < 𝐿, 1 ≤ 𝑘 ≤ 𝑁𝑐 

Mean 𝜇𝑐𝑒𝑙𝑙(𝑘) =
1

𝐿
∙ ∑ 𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖)

𝐿−1

𝑖=0
 

Standard deviation (SD) 𝜎𝑐𝑒𝑙𝑙(𝑘) = √
1

𝐿
∙ (∑ 𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖) − 𝜇𝑐𝑒𝑙𝑙(𝑘))2

𝐿−1

𝑖=0
 

Skewness 𝛾𝑐𝑒𝑙𝑙(𝑘) =
1

𝐿
∙ ∑ (

𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖) − 𝜇𝑐𝑒𝑙𝑙(𝑘)

𝜎𝑐𝑒𝑙𝑙(𝑘)
)3

𝐿−1

𝑖=0
 

Kurtosis 𝜅𝑐𝑒𝑙𝑙(𝑘) =
1

𝐿
∙ ∑ (

𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖) − 𝜇𝑐𝑒𝑙𝑙(𝑘)

𝜎𝑐𝑒𝑙𝑙(𝑘)
)4

𝐿−1

𝑖=0
 

Inactive area 𝐼𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘)(%) = 100 ∙ ∑ 𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖)
𝑇𝐻

𝑖=0
 

Sensitivity peak 𝑃𝑒𝑎𝑘(𝑘) = max (𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖)) 

Full-width 𝐹𝑊(𝑘) = (
𝑥

100
∙ max(𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖)) −

𝑥

100
∙ min (𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖))) 

Entropy 𝜖𝑐𝑒𝑙𝑙(𝑘) = − ∑ 𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖) ∙ log10 𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖)
𝐿−1

𝑖=0
 

Angular second moment 𝐴𝑆𝑀𝑐𝑒𝑙𝑙(𝑘) = ∑ 𝜌𝐸𝐿−𝑐𝑒𝑙𝑙(𝑘, 𝑖)
𝐿−1

𝑖=0
 

Kstat 𝑘𝑛  𝑖𝑠 𝑡ℎ𝑒 𝑢𝑛𝑖𝑞𝑢𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑡ℎ 𝑘 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 

Variation         𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑏𝑖𝑎𝑠𝑒𝑑 𝑆𝐷 𝑡𝑜 𝑚𝑒𝑎𝑛 

Median 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠 𝑡ℎ𝑒 50% 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 

Percentiles 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠 𝑡ℎ𝑒 10% 𝑎𝑛𝑑 90% 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 

Zscore 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑠 𝑡ℎ𝑒 𝑧𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒, 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝑆𝐷 

Error of measurement 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 

The solar cells in the test modules used in this study were analyzed individually by 

automatically extracting the cell-level EL images. From each solar cell image, the cell-level EL 

intensity distribution, 𝑝𝐸𝐿−𝐶𝑒𝑙𝑙(k, i), is calculated [49], where k is the solar cell number, and i is the 

intensity level (gray level occurrences) at a particular pixel position in a solar cell image. L is the 

maximum intensity level (256), while Nc is the number of solar cells in a module. nik is the number of 

occurrences of gray level i in the cell k, while nk is the total number of pixels in the image of the cell k. 
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From the cell-level image, distribution parameters are calculated for each solar cell, such as STD, 

mean, median, skewness, kurtosis, as defined in Table A1. 

Appendix B 

Figure A1 provides an overall performance evaluation of V1 and V2 and highlights the 

correlation between the actual and predicted labels. The percentage of solar cells predicted incorrectly 

in the different class categories is significantly lower for V1. The recall value calculated by the 

algorithm is highlighted in gold and represents the row (Total Col). Even though V2 measures an 

81.9% recall value, using V1 with the most dominant parameters improves the performance to a 

overall recall value of 97.9% for the RF classifier (see Table 3). A similar evaluation is inferred by 

correctly classifying the actual positive outcome, which correlates with the predicted positive 

outcome calculated from Figure A1 and reports as precision value highlighted in lavender and 

representing the column (Total line). As expected, the V1 feature vector achieved a precision value of 

99.2% (RF classifier), outperforming the combined approach (V2) with 86.2%. 

 

Figure A1. Confusion matrices of the implemented feature vectors (V1,V2) fed as an input to the RF 

ML classifier. 
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