55 research outputs found

    Monkey-based Research on Human Disease: The Implications of Genetic Differences

    Get PDF
    Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90–93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer’s disease, Parkinson’s disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology — there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists

    Letters

    No full text

    Dear Editor

    No full text

    Polyurethanes: Medical Applications

    No full text

    Unsupervised Spike Sorting of extracellular electrophysiological recording in subthalamic nucleus of Parkinsonian patients

    No full text
    The present study demonstrates the application of the Unsupervised Spike Sorting algorithm (USS) to separation of multi-unit recordings and investigation of neuronal activity patterns in the subthalamic nucleus (STN). This nucleus is the main target for deep brain stimulation (DBS) in Parkinsonian patients. The USS comprises a fast unsupervised learning procedure and allows sorting of multiple single units, if any, out of a bioelectric signal. The algorithm was tested on a simulated signal with different levels of noise and with application of Time and Spatial Adaptation (TSA) algorithm for denoising. The results of the test showed a good quality of spike separation and allow its application to investigation of neuronal activity patterns in a medical application. One hundred twenty-four single channel multi-unit records from STN of 6 Parkinsonian patients were separated with USS into 492 single unit trains. Auto- and crosscorrellograms for each unit were analyzed in order to reveal oscillatory, bursting and synchronized activity patterns. We analyzed separately two brain hemispheres. For each hemisphere the percentage of units of each activity pattern were calculated. The results were compared for the first and the second operated hemispheres of each patient and in total
    corecore