608 research outputs found
Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion
We present seven epochs of spectropolarimetry of the Type IIb supernova (SN)
2011dh in M51, spanning 86 days of its evolution. The first epoch was obtained
9 days after the explosion, when the photosphere was still in the depleted
hydrogen layer of the stripped-envelope progenitor. Continuum polarization is
securely detected at the level of P~0.5% through day 14 and appears to diminish
by day 30, which is different from the prevailing trends suggested by studies
of other core-collapse SNe. Time-variable modulations in P and position angle
are detected across P-Cygni line features. H-alpha and HeI polarization peak
after 30 days and exhibit position angles roughly aligned with the earlier
continuum, while OI and CaII appear to be geometrically distinct. We discuss
several possibilities to explain the evolution of the continuum and line
polarization, including the potential effects of a tidally deformed progenitor
star, aspherical radioactive heating by fast-rising plumes of Ni-56 from the
core, oblique shock breakout, or scattering by circumstellar material. While
these possibilities are plausible and guided by theoretical expectations, they
are not unique solutions to the data. The construction of more detailed
hydrodynamic and radiative-transfer models that incorporate complex aspherical
geometries will be required to further elucidate the nature of the polarized
radiation from SN 2011dh and other Type IIb supernovae.Comment: Post-proof edit. Accepted to MNRAS 2015 Aug 1
Interaction-powered supernovae: Rise-time vs. peak-luminosity correlation and the shock-breakout velocity
Interaction of supernova (SN) ejecta with the optically thick circumstellar
medium (CSM) of a progenitor star can result in a bright, long-lived shock
breakout event. Candidates for such SNe include Type IIn and superluminous SNe.
If some of these SNe are powered by interaction, then there should be a
relation between their peak luminosity, bolometric light-curve rise time, and
shock-breakout velocity. Given that the shock velocity during shock breakout is
not measured, we expect a correlation, with a significant spread, between the
rise time and the peak luminosity of these SNe. Here, we present a sample of 15
SNe IIn for which we have good constraints on their rise time and peak
luminosity from observations obtained using the Palomar Transient Factory. We
report on a possible correlation between the R-band rise time and peak
luminosity of these SNe, with a false-alarm probability of 3%. Assuming that
these SNe are powered by interaction, combining these observables and theory
allows us to deduce lower limits on the shock-breakout velocity. The lower
limits on the shock velocity we find are consistent with what is expected for
SNe (i.e., ~10^4 km/s). This supports the suggestion that the early-time light
curves of SNe IIn are caused by shock breakout in a dense CSM. We note that
such a correlation can arise from other physical mechanisms. Performing such a
test on other classes of SNe (e.g., superluminous SNe) can be used to rule out
the interaction model for a class of events.Comment: Accepted to ApJ, 6 page
Evidence for a Compact Wolf-Rayet Progenitor for the Type Ic Supernova PTF 10vgv
We present the discovery of PTF 10vgv, a Type Ic supernova (SN) detected by the Palomar Transient Factory, using the Palomar 48 inch telescope (P48). R-band observations of the PTF 10vgv field with P48 probe the SN emission from its very early phases (about two weeks before R-band maximum) and set limits on its flux in the week prior to the discovery. Our sensitive upper limits and early detections constrain the post-shock-breakout luminosity of this event. Via comparison to numerical (analytical) models, we derive an upper-limit of R ≾ 4.5 R_☉ (R ≾ 1 R_☉) on the radius of the progenitor star, a direct indication in favor of a compact Wolf-Rayet star. Applying a similar analysis to the historical observations of SN 1994I yields R ≾ 1/4 R_☉ for the progenitor radius of this SN
PTF11iqb: Cool supergiant mass loss that bridges the gap between Type IIn and normal supernovae
PTF11iqb was initially classified as a TypeIIn event caught very early after
explosion. It showed narrow Wolf-Rayet (WR) spectral features on day 2, but the
narrow emission weakened quickly and the spectrum morphed to resemble those of
Types II-L and II-P. At late times, Halpha emission exhibited a complex,
multipeaked profile reminiscent of SN1998S. In terms of spectroscopic
evolution, we find that PTF11iqb was a near twin of SN~1998S, although with
weaker interaction with circumstellar material (CSM) at early times, and
stronger CSM interaction at late times. We interpret the spectral changes as
caused by early interaction with asymmetric CSM that is quickly (by day 20)
enveloped by the expanding SN ejecta photosphere, but then revealed again after
the end of the plateau when the photosphere recedes. The light curve can be
matched with a simple model for weak CSM interaction added to the light curve
of a normal SN~II-P. This plateau requires that the progenitor had an extended
H envelope like a red supergiant, consistent with the slow progenitor wind
speed indicated by narrow emission. The cool supergiant progenitor is
significant because PTF11iqb showed WR features in its early spectrum ---
meaning that the presence of such WR features in an early SN spectrum does not
necessarily indicate a WR-like progenitor. [abridged] Overall, PTF11iqb bridges
SNe~IIn with weaker pre-SN mass loss seen in SNe II-L and II-P, implying a
continuum between these types.Comment: 21 pages, 12 figures, submitted to MNRA
The rise and fall of the Type Ib supernova iPTF13bvn - Not a massive Wolf-Rayet star
Context. We investigate iPTF13bvn, a core-collapse (CC) supernova (SN) in the nearby spiral galaxy NGC 5806. This object was discovered by the intermediate Palomar Transient Factory (iPTF) very close to the estimated explosion date and was classified as a stripped-envelope CC SN, likely of Type Ib. Furthermore, a possible progenitor detection in pre-explosion Hubble Space Telescope (HST) images was reported, making this the only SN Ib with such an identification. Based on the luminosity and color of the progenitor candidate, as well as on early-time spectra and photometry of the SN, it was argued that the progenitor candidate is consistent with a single, massive Wolf-Rayet (WR) star.
Aims. We aim to confirm the progenitor detection, to robustly classify the SN using additional spectroscopy, and to investigate if our follow-up photometric and spectroscopic data on iPTF13bvn are consistent with a single-star WR progenitor scenario.
Methods. We present a large set of observational data, consisting of multi-band light curves (UBVRI, g′r′i′z′) and optical spectra. We perform standard spectral line analysis to track the evolution of the SN ejecta. We also construct a bolometric light curve and perform hydrodynamical calculations to model this light curve to constrain the synthesized radioactive nickel mass and the total ejecta mass of the SN. Late-time photometry is analyzed to constrain the amount of oxygen. Furthermore, image registration of pre- and post-explosion HST images is performed.
Results. Our HST astrometry confirms the location of the progenitor candidate of iPTF13bvn, and follow-up spectra securely classify this as a SN Ib. We use our hydrodynamical model to fit the observed bolometric light curve, estimating the total ejecta mass to be 1.9 M⊙ and the radioactive nickel mass to be 0.05 M⊙. The model fit requires the nickel synthesized in the explosion to be highly mixed out in the ejecta. We also find that the late-time nebular r′-band luminosity is not consistent with predictions based on the expected oxygen nucleosynthesis in very massive stars.
Conclusions. We find that our bolometric light curve of iPTF13bvn is not consistent with the previously proposed single massive WR-star progenitor scenario. The total ejecta mass and, in particular, the late-time oxygen emission are both significantly lower than what would be expected from a single WR progenitor with a main-sequence mass of at least 30 M⊙
PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses
The hydrogen-poor supernova PTF11rka (z = 0.0744), reported by the Palomar Transient Factory, was observed with various telescopes starting a few days after the estimated explosion time of 2011 Dec. 5 UT and up to 432 rest-frame days thereafter. The rising part of the light curve was monitored only in the R_PTF filter band, and maximum in this band was reached ~30 rest-frame days after the estimated explosion time. The light curve and spectra of PTF11rka are consistent with the core-collapse explosion of a ~10 Msun carbon-oxygen core evolved from a progenitor of main-sequence mass 25--40 Msun, that liberated a kinetic energy (KE) ~ 4 x 10^{51} erg, expelled ~8 Msun of ejecta (Mej), and synthesised ~0.5 Msun of 56Nichel. The photospheric spectra of PTF11rka are characterised by narrow absorption lines that point to suppression of the highest ejecta velocities ~>15,000 km/s. This would be expected if the ejecta impacted a dense, clumpy circumstellar medium. This in turn caused them to lose a fraction of their energy (~5 x 10^50 erg), less than 2% of which was converted into radiation that sustained the light curve before maximum brightness. This is reminiscent of the superluminous SN 2007bi, the light-curve shape and spectra of which are very similar to those of PTF11rka, although the latter is a factor of 10 less luminous and evolves faster in time. PTF11rka is in fact more similar to gamma-ray burst supernovae (GRB-SNe) in luminosity, although it has a lower energy and a lower KE/Mej ratio
Observational and Physical Classification of Supernovae
This chapter describes the current classification scheme of supernovae (SNe).
This scheme has evolved over many decades and now includes numerous SN Types
and sub-types. Many of these are universally recognized, while there are
controversies regarding the definitions, membership and even the names of some
sub-classes; we will try to review here the commonly-used nomenclature, noting
the main variants when possible. SN Types are defined according to
observational properties; mostly visible-light spectra near maximum light, as
well as according to their photometric properties. However, a long-term goal of
SN classification is to associate observationally-defined classes with specific
physical explosive phenomena. We show here that this aspiration is now finally
coming to fruition, and we establish the SN classification scheme upon direct
observational evidence connecting SN groups with specific progenitor stars.
Observationally, the broad class of Type II SNe contains objects showing strong
spectroscopic signatures of hydrogen, while objects lacking such signatures are
of Type I, which is further divided to numerous subclasses. Recently a class of
super-luminous SNe (SLSNe, typically 10 times more luminous than standard
events) has been identified, and it is discussed. We end this chapter by
briefly describing a proposed alternative classification scheme that is
inspired by the stellar classification system. This system presents our
emerging physical understanding of SN explosions, while clearly separating
robust observational properties from physical inferences that can be debated.
This new system is quantitative, and naturally deals with events distributed
along a continuum, rather than being strictly divided into discrete classes.
Thus, it may be more suitable to the coming era where SN numbers will quickly
expand from a few thousands to millions of events.Comment: Extended final draft of a chapter in the "SN Handbook". Comments most
welcom
The bolometric light curves and physical parameters of stripped-envelope supernovae
The optical and optical/near-infrared pseudobolometric light curves of 84 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity Lp, enabling the construction of a luminosity function. Subsequently, the mass of 56Ni synthesised in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Analysis shows that host-galaxy extinction is an important factor in accurately determining luminosity values as it is significantly greater than Galactic extinction in most cases. It is found that broad-lined SNe Ic (SNe Ic-BL) and gamma-ray burst SNe are the most luminous subtypes with a combined median Lp, in erg s−1, of log(Lp) = 42.99 compared to 42.51 for SNe Ic, 42.50 for SNe Ib, and 42.36 for SNe IIb. It is also found that SNe Ic-BL synthesise approximately twice the amount of 56Ni compared with SNe Ic, Ib, and IIb, with median MNi = 0.34, 0.16, 0.14, and 0.11 M⊙, respectively. SNe Ic-BL, and to a lesser extent SNe Ic, typically rise from Lp/2 to Lp more quickly than SNe Ib/IIb; consequently, their light curves are not as broad
The Type IIb Supernova 2013df and its Cool Supergiant Progenitor
We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less 56Ni (≲0.06 M_☉) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013df is estimated to be AV = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope (HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature Teff = 4250 ± 100 K and a bolometric luminosity L_bol = 10^4.94 ± 0.06)L_☉. This leads to an effective radius R_eff = 545 ± 65 R_☉. The star likely had an initial mass in the range of 13–17 M_☉; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J
A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with children with autism
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article describes a pilot study in which a novel experimental setup, involving an autonomous humanoid robot, KASPAR, participating in a collaborative, dyadic video game, was implemented and tested with children with autism, all of whom had impairments in playing socially and communicating with others. The children alternated between playing the collaborative video game with a neurotypical adult and playing the same game with the humanoid robot, being exposed to each condition twice. The equipment and experimental setup were designed to observe whether the children would engage in more collaborative behaviours while playing the video game and interacting with the adult than performing the same activities with the humanoid robot. The article describes the development of the experimental setup and its first evaluation in a small-scale exploratory pilot study. The purpose of the study was to gain experience with the operational limits of the robot as well as the dyadic video game, to determine what changes should be made to the systems, and to gain experience with analyzing the data from this study in order to conduct a more extensive evaluation in the future. Based on our observations of the childrens’ experiences in playing the cooperative game, we determined that while the children enjoyed both playing the game and interacting with the robot, the game should be made simpler to play as well as more explicitly collaborative in its mechanics. Also, the robot should be more explicit in its speech as well as more structured in its interactions. Results show that the children found the activity to be more entertaining, appeared more engaged in playing, and displayed better collaborative behaviours with their partners (For the purposes of this article, ‘partner’ refers to the human/robotic agent which interacts with the children with autism. We are not using the term’s other meanings that refer to specific relationships or emotional involvement between two individuals.) in the second sessions of playing with human adults than during their first sessions. One way of explaining these findings is that the children’s intermediary play session with the humanoid robot impacted their subsequent play session with the human adult. However, another longer and more thorough study would have to be conducted in order to better re-interpret these findings. Furthermore, although the children with autism were more interested in and entertained by the robotic partner, the children showed more examples of collaborative play and cooperation while playing with the human adult.Peer reviewe
- …