396 research outputs found

    Conserved substitution patterns around nucleosome footprints in eukaryotes and Archaea derive from frequent nucleosome repositioning through evolution.

    Get PDF
    Nucleosomes, the basic repeat units of eukaryotic chromatin, have been suggested to influence the evolution of eukaryotic genomes, both by altering the propensity of DNA to mutate and by selection acting to maintain or exclude nucleosomes in particular locations. Contrary to the popular idea that nucleosomes are unique to eukaryotes, histone proteins have also been discovered in some archaeal genomes. Archaeal nucleosomes, however, are quite unlike their eukaryotic counterparts in many respects, including their assembly into tetramers (rather than octamers) from histone proteins that lack N- and C-terminal tails. Here, we show that despite these fundamental differences the association between nucleosome footprints and sequence evolution is strikingly conserved between humans and the model archaeon Haloferax volcanii. In light of this finding we examine whether selection or mutation can explain concordant substitution patterns in the two kingdoms. Unexpectedly, we find that neither the mutation nor the selection model are sufficient to explain the observed association between nucleosomes and sequence divergence. Instead, we demonstrate that nucleosome-associated substitution patterns are more consistent with a third model where sequence divergence results in frequent repositioning of nucleosomes during evolution. Indeed, we show that nucleosome repositioning is both necessary and largely sufficient to explain the association between current nucleosome positions and biased substitution patterns. This finding highlights the importance of considering the direction of causality between genetic and epigenetic change

    Genes Confer Similar Robustness to Environmental, Stochastic, and Genetic Perturbations in Yeast

    Get PDF
    Gene inactivation often has little or no apparent consequence for the phenotype of an organism. This property—enetic (or mutational) robustness—is pervasive, and has important implications for disease and evolution, but is not well understood. Dating back to at least Waddington, it has been suggested that mutational robustness may be related to the requirement to withstand environmental or stochastic perturbations. Here I show that global quantitative data from yeast are largely consistent with this idea. Considering the effects of mutations in all nonessential genes shows that genes that confer robustness to environmental or stochastic change also buffer the effects of genetic change, and with similar efficacy. This means that selection during evolution for environmental or stochastic robustness (also referred to as canalization) may frequently have the side effect of increasing genetic robustness. A dynamic environment may therefore promote the evolution of phenotypic complexity. It also means that “hub” genes in genetic interaction (synthetic lethal) networks are generally genes that confer environmental resilience and phenotypic stability

    Scales and mechanisms of somatic mutation rate variation across the human genome

    Get PDF
    Cancer genome sequencing has revealed that somatic mutation rates vary substantially across the human genome and at scales from megabase-sized domains to individual nucleotides. Here we review recent work that has both revealed the major mutation biases that operate across the genome and the molecular mechanisms that cause them. The default mutation rate landscape in mammalian genomes results in active genes having low mutation rates because of a combination of factors that increase DNA repair: early DNA replication, transcription, active chromatin modifications and accessible chromatin. Therefore, either an increase in the global mutation rate or a redistribution of mutations from inactive to active DNA can increase the rate at which consequential mutations are acquired in active genes. Several environmental carcinogens and intrinsic mechanisms operating in tumor cells likely cause cancer by this second mechanism: by specifically increasing the mutation rate in active regions of the genome

    Fluctuation and response in biology

    Get PDF
    In 1905, Albert Einstein proposed that the forces that cause the random Brownian motion of a particle also underlie the resistance to macroscopic motion when a force is applied. This insight, of a coupling between fluctuation (stochastic behavior) and responsiveness (non-stochastic behavior), founded an important branch of physics. Here we argue that his insight may also be relevant for understanding evolved biological systems, and we present a ‘fluctuation–response relationship’ for biology. The relationship is consistent with the idea that biological systems are similarly canalized to stochastic, environmental, and genetic perturbations. It is also supported by in silico evolution experiments, and by the observation that ‘noisy’ gene expression is often both more responsive and more ‘evolvable’. More generally, we argue that in biology there is (and always has been) an important role for macroscopic theory that considers the general behavior of systems without concern for their intimate molecular details

    A first-draft human protein-interaction map

    Get PDF
    BACKGROUND: Protein-interaction maps are powerful tools for suggesting the cellular functions of genes. Although large-scale protein-interaction maps have been generated for several invertebrate species, projects of a similar scale have not yet been described for any mammal. Because many physical interactions are conserved between species, it should be possible to infer information about human protein interactions (and hence protein function) using model organism protein-interaction datasets. RESULTS: Here we describe a network of over 70,000 predicted physical interactions between around 6,200 human proteins generated using the data from lower eukaryotic protein-interaction maps. The physiological relevance of this network is supported by its ability to preferentially connect human proteins that share the same functional annotations, and we show how the network can be used to successfully predict the functions of human proteins. We find that combining interaction datasets from a single organism (but generated using independent assays) and combining interaction datasets from two organisms (but generated using the same assay) are both very effective ways of further improving the accuracy of protein-interaction maps. CONCLUSIONS: The complete network predicts interactions for a third of human genes, including 448 human disease genes and 1,482 genes of unknown function, and so provides a rich framework for biomedical research

    Conflict between Noise and Plasticity in Yeast

    Get PDF
    Gene expression responds to changes in conditions but also stochastically among individuals. In budding yeast, both expression responsiveness across conditions (“plasticity”) and cell-to-cell variation (“noise”) have been quantified for thousands of genes and found to correlate across genes. It has been argued therefore that noise and plasticity may be strongly coupled and mechanistically linked. This is consistent with some theoretical ideas, but a strong coupling between noise and plasticity also has the potential to introduce cost–benefit conflicts during evolution. For example, if high plasticity is beneficial (genes need to respond to the environment), but noise is detrimental (fluctuations are harmful), then strong coupling should be disfavored. Here, evidence is presented that cost–benefit conflicts do occur and that they constrain the evolution of gene expression and promoter usage. In contrast to recent assertions, coupling between noise and plasticity is not a general property, but one associated with particular mechanisms of transcription initiation. Further, promoter architectures associated with coupling are avoided when noise is most likely to be detrimental, and noise and plasticity are largely independent traits for core cellular components. In contrast, when genes are duplicated noise–plasticity coupling increases, consistent with reduced detrimental affects of expression variation. Noise–plasticity coupling is, therefore, an evolvable trait that may constrain the emergence of highly responsive gene expression and be selected against during evolution. Further, the global quantitative data in yeast suggest that one mechanism that relieves the constraints imposed by noise–plasticity coupling is gene duplication, providing an example of how duplication can facilitate escape from adaptive conflicts

    Tissue specificity and the human protein interaction network

    Get PDF
    A protein interaction network describes a set of physical associations that can occur between proteins. However, within any particular cell or tissue only a subset of proteins is expressed and so only a subset of interactions can occur. Integrating interaction and expression data, we analyze here this interplay between protein expression and physical interactions in humans. Proteins only expressed in restricted cell types, like recently evolved proteins, make few physical interactions. Most tissue-specific proteins do, however, bind to universally expressed proteins, and so can function by recruiting or modifying core cellular processes. Conversely, most ‘housekeeping' proteins that are expressed in all cells also make highly tissue-specific protein interactions. These results suggest a model for the evolution of tissue-specific biology, and show that most, and possibly all, ‘housekeeping' proteins actually have important tissue-specific molecular interactions

    Selection to minimise noise in living systems and its implications for the evolution of gene expression

    Get PDF
    Gene expression, like many biological processes, is subject to noise. This noise has been measured on a global scale, but its general importance to the fitness of an organism is unclear. Here, I show that noise in gene expression in yeast has evolved to prevent harmful stochastic variation in the levels of genes that reduce fitness when their expression levels change. Therefore, there has probably been widespread selection to minimise noise in gene expression. Selection to minimise noise, because it results in gene expression that is stable to stochastic variation in cellular components, may also constrain the ability of gene expression to respond to non-stochastic variation. I present evidence that this has indeed been the case in yeast. I therefore conclude that gene expression noise is an important biological trait, and one that probably limits the evolvability of complex living systems

    Systematic discovery of germline cancer predisposition genes through the identification of somatic second hits

    Get PDF
    The genetic causes of cancer include both somatic mutations and inherited germline variants. Large-scale tumor sequencing has revolutionized the identification of somatic driver alterations but has had limited impact on the identification of cancer predisposition genes (CPGs). Here we present a statistical method, ALFRED, that tests Knudson’s two-hit hypothesis to systematically identify CPGs from cancer genome data. Applied to ~10, 000 tumor exomes the approach identifies known and putative CPGs – including the chromatin modifier NSD1 – that contribute to cancer through a combination of rare germline variants and somatic loss-of-heterozygosity (LOH). Rare germline variants in these genes contribute substantially to cancer risk, including to ~14% of ovarian carcinomas, ~7% of breast tumors, ~4% of uterine corpus endometrial carcinomas, and to a median of 2% of tumors across 17 cancer types

    Higher order genetic interactions switch cancer genes from two-hit to one-hit drivers.

    Get PDF
    We thank Luis Garcia-Jimeno for assistance with permutation. S.P. is supported by the Agencia Estatal de Investigacion, Ministerio de Ciencia e Innovacion (MCIN/AEI/10.13039/501100011033) through the RETOS project PID2019-109571RA-I00. This work was funded by the European Research Council (ERC) Starting grant (HYPER-INSIGHT, 757700) to F.S. and ERC Consolidator (IR-DC, 616434) and Advanced (MUTANOMICS, 883742) grants to B.L. F.S. and B.L. are funded by the ICREA Research Professor program. S.P., F.S., and B.L. acknowledge the support of the Severo Ochoa Centres of Excellence program to the CNIO, IRB Barcelona, and to the CRG (MCIN/AEI/10.13039/50110001103), respectively. B.L. and F.S. Work is funded with the grants BFU2017-89488-P and RegioMut BFU2017-89833-P (MCIN/AEI/10.13039/501100011033/FEDER "A way to make Europe"), respectively. B.L. is further supported by the Bettencourt Schueller Foundation, the Agencia de Gestio d'Ajuts Universitaris i de Recerca (2017 SGR 1322), and the Centres de Recerca de Catalunya (CERCA) program/Generalitat de Catalunya. B.L. also acknowledges the support of the Spanish Ministry of Economy, Industry, and Competitiveness to the European Molecular Biology Laboratory (EMBL) partnership. The results shown here are in whole or part based upon data generated by the TCGA Research Network.The classic two-hit model posits that both alleles of a tumor suppressor gene (TSG) must be inactivated to cause cancer. In contrast, for some oncogenes and haploinsufficient TSGs, a single genetic alteration can suffice to increase tumor fitness. Here, by quantifying the interactions between mutations and copy number alterations (CNAs) across 10,000 tumors, we show that many cancer genes actually switch between acting as one-hit or two-hit drivers. Third order genetic interactions identify the causes of some of these switches in dominance and dosage sensitivity as mutations in other genes in the same biological pathway. The correct genetic model for a gene thus depends on the other mutations in a genome, with a second hit in the same gene or an alteration in a different gene in the same pathway sometimes representing alternative evolutionary paths to cancer.S
    corecore