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Higher order genetic interactions switch cancer
genes from two-hit to one-hit drivers
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The classic two-hit model posits that both alleles of a tumor suppressor gene (TSG) must be
inactivated to cause cancer. In contrast, for some oncogenes and haploinsufficient TSGs, a
single genetic alteration can suffice to increase tumor fitness. Here, by quantifying the
interactions between mutations and copy number alterations (CNAs) across 10,000 tumors,
we show that many cancer genes actually switch between acting as one-hit or two-hit drivers.
Third order genetic interactions identify the causes of some of these switches in dominance
and dosage sensitivity as mutations in other genes in the same biological pathway. The
correct genetic model for a gene thus depends on the other mutations in a genome, with a
second hit in the same gene or an alteration in a different gene in the same pathway

sometimes representing alternative evolutionary paths to cancer.
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ancer driver genes are classified as oncogenes (OGs) or tumor

suppressor genes (TSGs) depending upon whether their

activation or inactivation contributes to cancer. Whereas a
single mutation in an OG can be sufficient to increase tumor fitness,
inactivation of both copies of a TSG is often required, as envisaged by
the classic two-hit hypothesis'»2. However, >500 genes have now been
causally implicated in cancer® and exceptions to these models are
known*®. For example, some OGs are dosage-sensitive, with
amplification of a mutated copy further increasing tumor fitness®-8
and some TSGs are haploinsufficient, with inactivation of a single
allele promoting cancer®-11.

Large-scale cancer genome sequencing presents an opportunity
to systematically investigate the dosage sensitivity of OGs and the
dominance of TSGs and the extent to which these are fixed or
variable. In model organisms such as yeast, the activity-fitness
functions of genes have been systematically experimentally
quantified. For growth rate, activity-fitness functions are typically
non-linear, are frequently ‘peaked’ (i.e., non-monotonic with
maximal fitness at an intermediate activity level), and can change
across conditions!2. Consistent with this, whether some TSGs
behave as haploinsufficient one-hit drivers or recessive two-hit
drivers has been reported to vary across cancer types and
patients®13-15 and mutated OGs can be highly amplified in one
cancer type but not in others!®.

Using data from ~10,000 tumors we show here that both OGs and
TSGs quite often vary in whether they behave as one-hit or two-hit
drivers. These changes in dosage sensitivity and dominance are
examples of the interactions between mutations being contingent
upon the context. In model organisms, such changes are often caused
by higher-order epistasis with, for example, a third mutation mod-
ifying the interaction between two alterations!’~20. We find that
higher-order interactions are also important in human tumors and
use third-order genetic interactions to identify mutations that switch
cancer genes between behaving as two-hit and one-hit drivers. Taken
together, our results suggest that the second hit in one driver and a
hit in another driver in the same biological pathway can sometimes
have similar consequences and be alternative evolutionary paths to
cancer.

Results

Interactions between mutations and CNA in 10,000 tumors.
We employed a statistical test based on log-linear regression - a
generalization of the chi-square test to more than two dimensions
(see Methods; Fig. la, b)—to identify interactions between
somatic mutations and copy number alterations (CNAs) in 201
cancer driver genes (see Methods) across ~10,000 tumors repre-
senting 33 types of cancer characterized as part of the TCGA
project?1-23, We tested for co-occurrence between mutations and
either CNA gain (or amplification) or CNA loss for each gene in
the cancer types in which it is significantly mutated (>2%
mutation frequency in a single cancer type; a mean of 2.3
(median = 1) cancer types per gene, 454 gene-cancer type pairs in
total. The 201 genes include 117 TSGs, 77 OGs, and 7 dual-
functional genes (DFGs) (genes classed as both TSGs and OGs in
different cancer types) (see Methods)?!.

In total, interactions between mutations and CNAs were detected
for 40 genes (19.9% of the tested genes) in at least one cancer type
and for 17.4% of all tested gene-cancer type pairs (false discovery rate,
FDR = 10%; Supplementary Figs. 1 and 2a). The 40 genes had
interactions between mutations and CNAs in a mean of 2.2 cancer
types (median=1, range: 1-17, with TP53 having the most
interactions). Interactions were detected for 26 TSGs (65.0% of the
detected genes), 12 OGs (30.0 %) with a total of 63 interactions
between mutations and CNA loss, and 24 interactions between
mutations and CNA gain (8 interactions were detected in both the

loss and gain models; FDR = 10%, Fig. 1c; the results for all tested
pairs are shown in Supplementary Fig. 3 and Supplementary Data 1).
Consistent with the two-hit model, 56/63 interactions between
mutations and CNA loss (88.9%) were for TSGs and 15/24
interactions between mutations and CNA gain (62.5%) were for
OGs. At FDR 20%, interactions between mutations and CNAs were
detected for 56 genes (27.9% of the tested genes) in at least one
cancer type and for 23.6% of all tested gene-cancer type pairs.

Four classes of driver genes. Clustering suggested the 73 genes
tested for interactions between mutation and CNAs in at least two
types of cancer fall into four major classes (Fig. 1c; Supplementary
Fig. 2b).

First, 23 TSGs, 18 OGs, and 3 other genes showed patterns
consistent with them primarily functioning as one-hit drivers
with no significant co-occurrence between mutations and CNAs
in any cancer types in which they are significantly mutated
(FDR = 10%). Examples of class I (‘one-hit’) drivers include the
genes SF3B1, NOTCHI, and IDH].

Second, 15 TSGs, 1 OG, and 2 DFGs only had interactions
between mutations and CNA loss in at least one cancer type,
consistent with them acting in at least some cancers as two-hit
drivers. These class 2 (‘two-hit loss’) drivers include the genes
RBI (3/13 cancer types), NF1 (5/8), NF2 (1/2), PTEN (7/15), and
BAPI (2/6).

Third, 2 TSGs and 6 OGs only had interactions between
mutations and CNA gain. These class 3 (‘two-hit gain’) drivers
include EGFR (2/3 cancer types), KRAS (4/16), and BRAF (1/6).
Changes in VAFs suggest it is the mutant allele that is normally
amplified for class 3 genes (Supplementary Fig. 5).

Fourth, a set of 3 cancer genes had interactions between mutations
and both CNA loss and gain. These class 4 (‘two-hit loss and gain’)
drivers include 1 TSG where mutations interact with CNA gain in
one cancer type but with CNA loss in a different type of cancer and 1
TSG and 1 OG where mutations interact with both CNA gain and
loss in the same cancer type. For example, mutations in CUL3
interact with CNA loss in one type of cancer (kidney renal papillary
cell carcinoma) but with CNA gain in head and neck squamous cell
carcinomas and with no interactions detected in one additional
cancer type in with the gene is significantly mutated. An additional
striking example is TP53 which has interactions between mutations
and CNA loss in 16 cancer types, between mutations and CNA gain
in 7 cancer types, and between mutations and both CNA loss and
gain in 6 cancer types.

We also investigated the alternative possibilities of two-way
interactions through (i) promoter DNA hypermethylation (silencing)
and somatic mutation or (ii) promoter DNA hypermethylation and
CNA loss. Using 31 gene-tissue pairs in which a cancer gene is
epigenetically silenced in >1% of samples, only one significant two-
way interaction between promoter DNA hypermethylation and CNA
loss-ZNF133 in ovarian cancer—was identified (FDR 10%; Supple-
mentary Fig. 7b; Supplementary Data 2).

Changes in the interactions between mutations and CNAs.
Although the class 4 drivers are extreme examples of the interactions
between mutations and CNAs changing across contexts (cancer
types), the data suggest that this is also true for many of the other
drivers (Fig. 1c). For example, whereas mutations in the classic TSG
NF1I interact with CNA loss in most cancer types (62.5%), the driver
mutations in BRAF only interact with CNA gain in one of the four
cancer types in which it is significantly mutated (skin cutaneous
melanoma; SKCM) (Fig. 2a, Supplementary Fig. 6). To further
explore changes in these interactions, we tested whether the strength
of interaction between mutations and CNAs differs between detected
cancer type (cancer type-specific two-way interaction; FDR = 10%)
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Fig. 1 Interactions between somatic mutations and CNAs in human tumors. a Classical one-hit and two-hit models. b Log-linear regression for identifying
interactions between mutations and CNAs. ¢ Interaction coefficient (i.e., effect size) and FDR-values in each cancer type for 73 cancer genes tested in at
least two cancer types. Cancer types with >150 samples and at least 1 significant interaction are shown (FDR =10%). The full data set is shown in
Supplementary Fig. 3. Cancer-type abbreviations are listed in Supplementary Table 1. Source data underlying ¢ are provided as a Source Data file.
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Fig. 2 Interactions between mutations and CNAs change across cancer types. a Tested hypothesis. b Test for whether interactions change between cancer
type A (detected; FDR 10%) and other cancers in which the gene is significantly mutated (compared). Ga Mut denotes the number of samples with somatic
mutation of gene A in cancer type with a significant interaction, Ga CNAs indicates a number of samples with CNAs of gene A in cancer type with a significant
interaction, and Tissue denotes the number of samples with genomic alterations of gene A in other significantly mutated cancer types. ¢ Volcano plot comparing
differences of the log of the odds ratios for the co-occurrences between mutation and CNA in two cancer types (i.e., detected cancer type and other significantly
mutated cancer types together). A total of 48 detected interactions for 26 genes were tested. Color coding is for the cancer type in which the two-way interaction
was detected (FDR =10%). 0.5 was added to each frequency when calculating odds ratios to avoid division by zero frequencies. d Effect sizes (interaction
coefficients) and FDR values for tissue-specific interactions were estimated as the ratio between the number of detected interactions in the permutated matrix and
the number of detected with the real data with 100 permutations. Source data underlying ¢ and d are provided as a Source Data file.

and other cancers in which the gene is mutated (>2%) using log-
linear regression (Fig. 2b; Supplementary Data 3). We tested whether
48 interactions for 26 genes (36 interactions for 18 genes in class 2
and 12 interactions for 8 genes in class 3, FDR = 10% in one cancer
type) changed in strength in other significantly mutated cancers
together (median =3 cancer types; mean=4.5) (Fig. 2¢, d and
Supplementary Fig. 6). This analysis revealed that 41.6% (20/48) of
the interactions differ in strength between cancer types (FDR = 10%;
16 interactions from 10 genes in class 2, 4 interactions from 4 genes
in class 3). For example, the interaction between BRAF mutation and
CNA gain in SKCM is stronger than in the three other types in which
BRAF is significantly mutated (FDR = 10%).

Third-order interactions switch genes from two-hit to one-hit
drivers. Why do the interactions between mutations and CNAs
change in different cancer types and even within the same type of
cancer? One cause of changes in the pairwise interactions between
mutations in model organisms is higher-order genetic interactions
(also called higher-order epistasis)!#2425. In the simplest examples—
third-order interactions—the interaction between two mutations
changes depending upon whether a third mutation is present or not.
Third-order interactions can occur among mutations in the
same!?2627 or different!”-?8 genes and make important contributions
to diverse phenotypic traits such as growth and drug resistance!2°,
We hypothesized that conceptually similar higher-order interactions
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might be occurring in cancer genomes, with mutations in a second
gene (between gene interaction) altering the interaction between a
mutation and CNA in a cancer gene (within gene interaction) (Fig.
3a). Specifically, we tested for third-order interactions involving two
genetic alterations in one gene (somatic mutation and CNA) and the
third alteration in a second gene (somatic mutation). To identify
third-order genetic interactions, we only considered somatic muta-
tions in the second gene, not including copy-number changes in the
second gene to avoid possible confounding by the overall level of
copy-number variation. Since many tumors carry more than two
driver mutations’, there is plenty of opportunity for higher-order
interactions amongst driver mutations.

We used log-linear regression to test for third-order interactions
between mutations and CNAs in one gene (gene A) and mutations in
a second gene (gene B, Fig. 3b). Across cancer types, we were able to
test for third-order interactions for 40 genes with 79 pairwise
interactions between mutations and CNAs (63 interactions for 30
genes with CNA loss and 24 for 14 genes with CNA gain; 4 genes
with both). Each pairwise interaction was tested for interactions with
mutations in a mean of 19.1 other driver genes (median = 19)
mutated in at least 2% of samples, with a total of 1511 third-order
interactions tested (Supplementary Data 4).

In total, we identified 17 third-order interactions (FDR = 10%, this
likely underestimates the true number of higher-order interactions
because of the low statistical power to detect them). To illustrate how
the presence of mutations in a second driver gene (gene B) alters the
interaction between mutations and CNAs in a first driver (gene A), in
Fig. 3c-f, we divide samples according to whether they do (Fig. 3d) or
do not (Fig.3e) carry mutations in gene B and then plot the frequency
of gene A CNA in samples carrying gene A mutations. Most of the
third-order interactions (76.5%, 13/17) are examples where the
presence of a mutation in a second driver gene decreases the strength
of the interaction between mutations and CNAs in the first driver
(Fig. 3c—f). For example, there is a strong interaction between
mutations and CNA loss in KEAPI in lung squamous cell carcinoma
(LUSC) but not in samples that also carry a PTEN mutation. This
suggests that mutations in PTEN sensitize lung cells to the effects of
reduced KEAPI activity. Similarly, in Fig. 3g we show how the
frequency of gene A mutations in samples carrying gene A CNAs
varies depending upon the presence of mutations in gene B. For
example, there is a strong third-order interaction between BRAF
mutations, BRAF CNA gain, and NRAS mutations in SKCM. Only
2.7% of samples with BRAF CNA gain and NRAS mutations have
BRAF mutations whereas 81.9% of samples with BRAF CNA gain
without NRAS mutations have BRAF mutations. This is consistent
with mutations in both genes activating the same pathway.

Second hits in the same pathway switch genes from two-hit to
one-hit drivers. Strikingly, most of the third-order interactions
involve two genes from the same canonical cancer signaling
pathway3!l. This includes the PI3K pathway (BRCA and UCEC),
RTK/RAS pathway (SKCM), Nrf2 pathway (LUSC), TBE-B/
SMAD4 pathway (COADREAD), cell growth pathway (LGG and
LIHC), and p53 pathway (LUAD and LGG). Genes participating
in third-order interactions are indeed enriched for shared func-
tions and pathway membership (Fig. 3h; Fig. 4).

This suggests a simple principle for why these third-order
interactions occur and why cancer genes switch between being
one-hit and two-hit drivers: two hits in one gene in a pathway or
two hits in two different genes in a pathway can have similar
functional consequences and so act as an alternative (partially
redundant) evolutionary paths during tumor progression. Using
this principle, one additional third-order interaction (RBI-ASXL2
in BLCA) could be identified when gene pairs were restricted to

genes sharing at least one Gene Ontology molecular process or
pathway annotation (FDR = 10%; Supplementary Data 5).

Discussion

We have shown here in an analysis of ~10,000 tumors that whether a
cancer gene requires only one or two genetic alterations to contribute
to cancer typically varies across different types of cancer and across
individuals. We have also shown that higher-order genetic interac-
tions are important in human tumors, ie., that in order to under-
stand the genetics of cancer, not only do the effects of individual
mutations and their pairwise interactions need to be considered, but
also what happens when three or more alterations are combined.
Indeed, we have identified multiple examples where the pairwise
interaction between two alterations changes when a third alteration is
present in a cancer genome.

Quantifying these third-order interactions allows us to propose a
simple principle for tumor evolution (Fig. 5): that for some cancer
types (e.g, SKCM) tumor evolution can occur via two alternative
evolutionary paths—either via a cell obtaining two hits in a single
driver gene (e.g, BRAF) or via a cell obtaining single hits in two
different genes in the same pathway (e.g., BRAF and NRAS). Put
another way, a pathway needs two genetic alterations to be (in)
activated, but these alterations can either both be in the same gene or
they can be in two different genes in the pathway. This mutual
exclusivity is observed in multiple cancer pathways and for multiple
types of cancer (Fig. 3h; Fig. 4). Indeed, this might reflect a more
general principle of genetic architecture that a strong perturbation in
one gene can have a similar functional consequence as the combi-
nation of two weaker perturbations in two different genes in a
pathway.

In contrast to the changing activity-fitness functions of many
drivers, a subset of cancer genes (class 1 drivers) appears to nearly
always behave as one-hit drivers, consistent with second altera-
tions conferring either no benefit or actually a fitness cost to a
tumor. Consistent with this second possibility, many class 1 TSGs
have been previously identified as essential genes (Supplementary
Table 2), suggesting these TSGs may have ‘peaked’ (non-mono-
tonic) activity-fitness functions whereby reduced activity pro-
motes cancer but complete inactivation is lethal to a cell. Two-hits
in these drivers may never (or only very rarely) be compatible
with cell viability. This suggests the intriguing translational
implication that either re-activating or further inactivating class 1
TSGs may be viable therapeutic strategies to pursue.

Finally, we note that, although the results presented here apply to
human cancers, it is likely that the principles about genetic archi-
tecture will also apply to other diseases and traits. The demonstration
of the importance of higher-order interactions in cancer suggests that
they will also contribute to the genetic architecture of other complex
diseases. Moreover, it seems likely that additional diseases beyond
cancer will also have alternative ‘within’ and ‘between’ locus causes,
with disease resulting from the combination of mutations in one gene
in some individuals and from the interaction between mutations in
two different genes in others. More generally, similar principles may
apply during evolution, with multiple mutations in a single gene and
the interactions between mutations in different genes in a pathway
representing parallel paths to the evolution of new phenotypic traits.

Methods

Sample preparation. We used comprehensive molecular datasets collected across
33 cancer types from 11,276 patients by the TCGA project?3. We only considered
samples that had available data across two genomic platforms: somatic mutations
and CNAs. To obtain high-quality data set, we discarded samples that have been
flagged with quality control issues or during pathology review (merged_sample_-
quality_annotations.tsv). After applying these filtered, hypermutated samples were
also excluded (more variant than third quartile + interquartile range x 1.5). A total
of 9175 patients' data were used in this work.
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Somatic genomic alteration. Genomic data from TCGA Data were obtained from
TCGA data Portal (Pan-Can Atlas). We downloaded version 2.8 of the mutation
annotation format (MAF) file provided by the ‘Multi-Center Mutation Calling in
Multiple Cancers’ (MC3) project, as a part of the TCGA Pan-Cancer Atlas effort?2.
These unified MC3 somatic mutations were called from seven software packages
using a single-standardized protocol across many different individual studies
(mc3.v0.2.8.PUBLIC.maf.gz). It provides high-quality variant calls after applying
rigorous filtering steps to discard low-quality variants and remove possible
sequencing artifacts. Somatic mutation calls were assigned to all premature

truncation mutations (encompassing splicing variants, frameshift indels, and
nonsense variants) and to non-synonymous (missense mutation), single-residue
substitutions (in-frame indels). Predicted deleterious missense was assigned at least
one of two tools (SIFT and PolyPhen2) predicted as deleterious/damaging
variant3%33, Genomic regions with significant levels of CN arrangements and their
target genes of these somatic CNAs were determined using GISTIC 2.0 with their
g-values®4, Gene-level CN data were obtained from Synapse (syn5049520). High-
level deletion for a gene was defined as GISTIC threshold CN value of —2, whereas
high-level amplification for a gene was assigned with threshold CN value +2.
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Fig. 3 Higher-order genetic interactions identify mutations that switch genes from two-hit to one-hit drivers. a A third-order genetic interaction means
the strength of a pairwise interaction (between mutation and CNA in the first gene) changes when a second gene is mutated. b Log-linear regression for identifying
third-order interactions between mutations and CNAs in one gene and mutations in a second gene. The three-way model quantifies the strength of interactions of
two genomic alterations within a single gene with a background alteration of the second gene (gene B) mutation in a cancer type. Ga Mut denotes the number of
samples with somatic mutation of gene A, Ga CNAs indicates a number of samples with CNAs of gene A, and Gb Mut denotes the number of samples with
somatic mutation of gene B. c¢-f Effect sizes (interaction coefficients) and two-sided P-values for 17 third-order interactions. Interactions between mutation and
CNA in all samples (c), samples with gene B mutations (d), and samples without gene B mutations (e), and third-order interactions (f). g Frequencies of gene A
CNAs in samples with gene A mutations (top panel) or gene A mutations in samples with gene A CNAs (bottom panel) depending on whether gene B is mutated
or not. h Gene pairs involved in third-order interactions share functions and pathways more than random pairs of cancer genes (P-values from two-sided
Mann-Whitney U test). The median value of each gene set is displayed as a band inside each box. The length of each whisker is 1.5 times the interquartile range

(shown as the height of each box). Source data underlying c-h are provided as a Source Data file.
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Fig. 4 Mutations that switch genes from two-hit to one-hit drivers in six cancer types. Changes in the strength of interaction between mutations and
CNAs in driver genes (‘gene A") in the absence or presence of mutations in a second cancer gene (‘gene B'). A summary of the pathway in which the

function of the gene is also shown.
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Fig. 5 Alternative evolutionary paths to cancer. Once a driver gene is
mutated, either a second hit in the same gene or an alteration in a different
gene in the same biological pathway can be alternative evolutionary paths
to cancer. That is, for some pathways, two hits may be required to (in)
activate it but these hits can either be in one gene or in two different genes.
The ordering of events may differ from that illustrated here.

Broad-level deletion (loss) and broad-level amplification (gain) were estimated by
GISTIC threshold CN values having less than —1 or greater than +1, respectively.

Somatic driver set. To characterize interactions between mutations and CNAs, we
compiled a high-confidence list of 201 somatic cancer driver genes. First, 235 cancer
genes were collected by the union of genes predicted by the eight driver gene predictors
(20/20+, ActiveDriver, CompositeDriver, MuSiC, MutSig2CV, OncodriveCLUST,
OncodriveFML, and e-Driver), manually reference search, and individual TCGA studies
from a Pan-Cancer Atlas?!. The entire process is described in more detail in?!. Next,
cancer genes were selected if they were: (1) listed as ‘oncogene’ or ‘tumor suppressor’ at
least one single cancer type (not in PANCAN’) and (2) mutation frequencies in a
certain cancer type >2%.

Collected somatic drivers were categorized either as TSG or OG according to 20/
20+ predictors across each cancer types®. DFGs are genes classified as both TSGs and
OGs in different cancer types. This method is based on an improved version of the 20/
20 rule (gene is considered to be a TSG when a gene has >20% truncating mutations,
whereas OG, will be defined with >20% missense mutations)>® using Random Forest
machine learning algorithm for classifying TSG and OG from somatic mutations. It
applies five different features: capturing mutational clustering, evolutionary
conservation, predicted functional impact of variants, mutation consequence types, gene
interaction network connectivity, and other relevant covariates. In addition, genes in the
cancer types in which it is significantly mutated (>2% mutation frequency in a single
cancer type) were only considered. Finally, 281 TSGs-single tissue pairs and 173 OGs-
single tissue pairs were assigned from 201 genes (55 genes were not included they were
not assigned any category either TSG or OG). TSGs and their cancer types were defined
when they were annotated as ‘tsg’ or ‘possible tsg’, whereas OGs and their types were
assigned with the annotation as ‘oncogene’ or ‘possible oncogene’.

Alternative epi/genomic alterations. Multiple driver mutations (MM:s) in cancer
genes were obtained from Saito et al. using DNV Checker in five cancer cohorts, of
which 9230 TCGA samples®’. It is designed to detect multiple single-nucleotide
variants observed in the same codon and also check their allelic frequencies with
the corresponding BAM files to define cis or trans-MMs.

Epigenetic silencing (promoter DNA hypermethylation) events of cancer genes
in TCGA samples were obtained from Saghafinia et al. using the RESET method38.
After collecting only probes mapping to a gene promoter region, high DNA
methylation probes were defined with mean S-values (0, minimal level of DNA
methylation; 1, the maximal level of DNA methylation) higher than 0.8 and
standard deviation lower than 0.005 in normal samples. Next, the association
between DNA hypermethylation (probe p) and a significant decrease of mRNA
expression (gene g that corresponds to p) was analyzed to evaluate the effect of
aberrant DNA methylation states. After 100 randomizations to test the significance,
a hypermethylation call with FDR <0.1 was selected. For running a log-linear
regression model for two-way interaction between hypermethylation and CNA loss
(or mutation), we converted hypermethylation events from probes to genes when
>50% of corresponding probes have hypermethylation events.

Allelic imbalance (AI) was determined by testing for a change in variant allele
frequencies (VAFs) in the tumor sample compared to in the matched non-tumor
sample (mainly from blood) for each patient from our previous study®’. To define
Al in each sample across genes, we first collected all germline variants in the coding
and noncoding regions within each gene (expanding the analyzed region

bidirectionally to 100 kb for genes shorter than this size to reduce the gene length
bias). Next, a two-tailed Fisher’s test that compares the sequencing read counts
collecting variants and the reference alleles in the tumor were performed with each
collected variant in a gene. The P-values from all collected variants in a gene were
then pooled by Fisher’s method for combing P-values. Finally, the AI event in the
gene was assigned if the pooled P-value was <0.05.

Finally, from 201 tested cancer genes, 64 genes with MMs in their canonical cancer
types, 19 epigenetically silenced genes (>1% in their canonical cancer types; 30 pairs),
and 159 genes with Al events, were analyzed. In total, 32 interactions between mutation
and Al were detected (FDR 10%), including significantly overlapping 2-way interactions
from CNA loss model (20 interactions; 62.5%, odds ratio = 10.23, P = 2.2E—16)
(Supplementary Fig. 7a and Supplementary Data 6). From 64 cancer genes with MM
events in TCGA, three genes (APC, PTEN, and PIK3CA) presented very high MMs
frequencies in Colon/Rectum adenocarcinoma (COADREAD) and Uterine Corpus
Endometrial Carcinoma (UCEC) that is assigned to the one-hit driver from CNA loss
model (Supplementary Fig. 7c). In particular, APC in COADREAD has 38.1% of MMs
compared to 67.9% of mutated samples (100% of MMs were in cis, ie., multiple
mutations to the same alleles), PTEN in UCEC has 22.3% of MMs compared to 57.6%
of mutated samples (majority of MMs, 68.8% were in trans, i.e., multiple mutations to
the different alleles), and PIK3CA in UCEC has 6.1% of MMs from 43.7% of mutated
samples (majority of MMs, 61.5% were in cis). Although we tested a diverse range of
alternative possibilities that could contribute to two-way interactions, most one-hit
drivers from the mutation-CNAs model still did not have alternative two-way
interactions beyond the co-occurrences between mutations and CNAs.

Statistical evaluation of mutation—CNAs association. To determine the sig-
nificance of the co-occurrence of a pair of somatic mutation (all kinds of non-synon-
ymous) and CNAs within a gene across cancer types, we generated a model using a log-
linear regression using the MASS package (version 7.3.53.1) in R%. Two separate
models depending on CNAs (either gain or loss) have been performed in each indi-
vidual gene-tissue pair as follows:

gim(N ~ mut + CNA gain + mut : CNA gain, family = poisson (link = “log”))
(&)

gIm(N ~ mut + CNA loss + mut : CNA loss, family = poisson (link = “log”)) (2)

where: mut = number of samples with somatic mutation of gene A; CNA-gain (or
loss) = number of samples with CNA gain or amplified (or loss) of gene A; mut:CNA-
gain (or loss) = number of samples with both mutation and CNA gain or amplified (or
loss) of gene A. Therefore, two-way interactions between mutation and CNA gain (or
loss) were measured by comparing between CNA wild-type (no copy-number changes)
and CNA loss (only one-copy loss) or CNA gain (one-copy gain or more than two-
copy gain) samples. The regression coefficient and P-value were computed for indivi-
dual gene-cancer type pairs and derived from the mut:CNA gain (or loss) using the
summary function in R. More negative values from CNA loss model refers to stronger
co-occurrence between mutation and CNA loss within a gene-tissue pair, whereas more
positive value from the CNA gain model represents stronger co-occurrence between
mutation and CNA gain within a gene-tissue pair. To determine the significance of the
co-occurrence of a pair of two genomic events in the same gene, we applied a per-
mutation strategy*! that controls for the heterogeneity in genomic alterations within
and across samples. Using the permatswap function in the R package vegan (version
2.5.7) (http://vegan.r-forge.r-project.org), we produced permuted genomic alteration
matrices that maintain the total number of genomic alterations for each alteration
across samples as well as the total number of alterations per sample. Somatic mutation,
CNAs loss, and gain events were considered as separate classes and the permutation was
performed for each cancer type separately. With 100 permutations, FDR is estimated as
the ratio between the number of detected interactions in the permuted matrix (ie., false
interaction) and the number detected with the real data (i.e., true interaction) for each
P-value cut-off (Supplementary Fig. 1).

The three-way model quantifies the strength of interactions of three genomic
alterations from two genes with a background alteration of the second gene (gene B)
mutation in a cancer type in a similar manner as the two-way interaction model within
a gene (gene A). High-order three-way interactions were identified using the following
models:

gm(N ~ mut + CNA gain + Target + mut : CNA gain + CNA gain : Target + mut : Target
+ mut : CNA gain : Target, family = poisson (link = “log”))

3)

gm(N ~ mut + CNA loss + Target + mut : CNA loss + CNA loss : Target + mut : Target
+ mut : CNA loss : Target, family = poisson (link = “log”))

4)

where: mut = number of samples with somatic mutation of gene A; CNA-gain (or
loss) = number of samples with CNA gain or amplified (or loss) of gene A;

target = number of samples with somatic mutation of gene B; CNAs-gain (or

loss): Target = number of samples with both somatic mutation of gene B and CNAs of
gene A; mut:Target = number of samples with both somatic mutation of gene A and
gene B; mut: gene A CNAs:Target = number of samples with somatic mutation of gene
B when samples with both mutation and CNAs of gene A. 1 was added to each
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frequency when running the regression model to avoid division by zero frequencies.
From the equation, high-order three-way interaction regression coefficient and P-values
are derived from the mut:CNA gain (or loss):Target with summary statistics in R.

To check the effect of different mutation types on the two-way interactions
between mutation and CNAs, we tested three additional two-way models across (i)
only premature truncation variants (PTVs), (ii) only predicted deleterious missense
mutations (DelMis), and (iii) only non-deleterious missense mutations (ND_Mis).
While several mutation type-specific 2-way interactions were identified (FDR 10%;
four interactions from PTVs-CNA loss and two interactions from DelMis-CNA
loss), the majority of two-way interactions across different mutations types were
also detected when testing for interactions with all types of somatic mutations
(original design). In detail, 90.7% of PTVs, 93.3% of DelMis, and 100% of NonMis
were overlapped with all types of somatic mutations (FDR 10%) (Supplementary
Fig. 8; Supplementary Data 7).

Next, we restricted our analysis to functional non-synonymous mutations and
PTVs after removing putative neutral non-synonymous mutations. We first survey
the frequencies of functional non-synonymous mutations (Func-NSY) versus
putative neutral non-synonymous mutation (Neutral-NSY) by following the
definition of Mina et al. 42: Func-NSY when recurrently detected at the same amino
acid position (i.e., hotspot mutations) or having evidence of their functional role
and Neutral-NSY is considered all other non-synonymous mutations. We found
that median frequencies for Func-NSY in our collected non-synonymous
mutations are 66.7% across cancer types (median for TSGs = 42.6% and for
OGs = 87.5%; Supplementary Fig. 9a). Next, we repeated a statistical test for two-
way interactions between mutations and CNAs for all somatic mutations except for
Neutral-NSY (that is, all PTVs + only Func-NSY) to evaluate the robustness of
2-way interactions when including putative Neutral-NSY or not. Overall, the Func-
NSY only analysis presented very similar effect sizes to the original model (Pearson
correlation coefficient (PCC) = 0.85 between coefficient values in an additional
model and the original model in CNAs loss; PCC = 0.82 in CNAs gain). Also, the
interactions identified using this Func-NSY only definition of somatic mutations
strongly overlap with those identified in the original model at FDR 10%: 94.6% (53
over 56 interactions) in the CNA loss model and 85.7% (12 over 14 interactions) in
the CNA gain model (Supplementary Fig. 9b). Furthermore, detected three-way
interactions (FDR 10%) in the Func-NSY only model also strongly overlap with the
original model: 55.5% (5 out of 9) overlapping in the CNA loss model and 60.0% (6
out of 10) in the CNA gain model (Supplementary Fig. 9¢).

Functional annotation. Functional similarity between two genes with third-order
interactions was tested for sharing functional annotation of GO biological process
terms, molecular function terms were collected from DAVID 6.8 (https://
david.ncifcrf.gov/)*3 and Reactome biological pathway (https://reactome.org/)*.

Essential genes from CRISPR-Cas9 and shRNA screening. The 2134 common
essential genes identified in a CRISPR-Cas9 screen, which show strong depen-
dencies in >90% of pan-cancer cell lines, were downloaded from DepMap (https://
depmap.org/portal/download/). Next, 297 conserved essential genes across three
cancer types with 72 cell lines were collected from Marcotte et al. 4.

Software for statistical analyses. Regression models were performed in the R
statistical programming environment (v.3.6.2). Libraries that are required include
vegan v.2.5.7, MASS v.7.3.53.1, stringr v.1.4.0, reshape2 v.1.4.4, data.table v.1.14.0,
dplyr v.1.0.5, viridis v.0.5.1. Figures were generated using ggplot2 v.3.3.3 and
pheatmap v.1.0.12. All statistical analyses were carried out using Python
2.7(packages Stats v.1.2.1 and NumPy v.1.16.5).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

This study re-analyzed published data sets, including tumor data sets from TCGA Pan-
Cancer Atlas. The TCGA somatic mutation data (mc3.v0.2.8. PUBLIC.maf.gz) was
downloaded from https://gdc.cancer.gov/about-data/publications/pancanatlas and copy-
number alteration data were downloaded from Synapse (syn5049520). Gene Ontology
(GO molecular function and biological process) was downloaded from the DAVID 6.8
(https://david.ncifcrf.gov/) and list of Reactome pathways was downloaded from the
https://reactome.org/. A list of the somatic driver genes was compiled in Supplementary
Table 1 from Bailey et al. (https://doi.org/10.1016/j.cell.2018.02.060). Epigenetic silencing
data can be obtained by contacting the corresponding author of the original publication
(https://doi.org/10.1016/j.celrep.2018.09.082). Multiple driver mutations (MMs) in
cancer genes were obtained in Supplementary Table 3 from Saito et al. (https://doi.org/
10.1038/541586-020-2175-2), and allelic imbalance data can be obtained by contacting
the corresponding author of the original publication (https://doi.org/10.1038/s41467-
018-04900-7). A list of functional non-synonymous mutations was collected in
Supplementary Table 1 from Mina et al. (https://doi.org/10.1038/s41588-020-0703-

5). Source data are provided with this paper.

Code availability
Source code for log-linear regression test is available at https://github.com/SolipParkLab/
CancerFitness.

Received: 17 May 2021; Accepted: 9 November 2021;
Published online: 03 December 2021

References

1. Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma.
Proc. Natl Acad. Sci. USA 68, 820-823 (1971).

2. Kern, S. E. Whose hypothesis? Ciphering, sectorials, D lesions, freckles and the
operation of Stigler’s Law. Cancer Biol. Ther. 1, 571-581 (2002).

3. Sondka, Z. et al. The COSMIC Cancer Gene Census: describing genetic
dysfunction across all human cancers. Nat. Rev. Cancer 18, 696-705 (2018).

4. Berger, A. H,, Knudson, A. G. & Pandolfi, P. P. A continuum model for
tumour suppression. Nature 476, 163-169 (2011).

5. Sherr, C. J. Principles of tumor suppression. Cell 116, 235-246 (2004).

6. Nikolaev, S. et al. Extrachromosomal driver mutations in glioblastoma and
low-grade glioma. Nat. Commun. 5, 5690 (2014).

7. Takano, T. et al. Epidermal growth factor receptor gene mutations and
increased copy numbers predict gefitinib sensitivity in patients with recurrent
non-small-cell lung cancer. J. Clin. Oncol. 23, 6829-6837 (2005).

8. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma.
Nature 455, 1069-1075 (2008).

9. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive
aneuploidy patterns and shape the cancer genome. Cell 155, 948-962 (2013).

10. Lindeboom, R. G., Supek, F. & Lehner, B. The rules and impact of nonsense-
mediated mRNA decay in human cancers. Nat. Genet 48, 1112-1118 (2016).

11. Solimini, N. L. et al. Recurrent hemizygous deletions in cancers may optimize
proliferative potential. Science 337, 104-109 (2012).

12. Keren, L. et al. Massively parallel interrogation of the effects of gene
expression levels on fitness. Cell 166, 1282-1294 e18 (2016).

13. Alimonti, A. et al. Subtle variations in Pten dose determine cancer
susceptibility. Nat. Genet. 42, 454-458 (2010).

14. Varley, J. M., Evans, D. G. & Birch, J. M. Li-Fraumeni syndrome-a molecular
and clinical review. Br. J. Cancer 76, 1-14 (1997).

15. Goss, K. H. et al. Enhanced tumor formation in mice heterozygous for Blm
mutation. Science 297, 2051-2053 (2002).

16. Bielski, C. M. et al. Widespread selection for oncogenic mutant allele
imbalance in cancer. Cancer Cell 34, 852-862 e4 (2018).

17. Kuzmin, E. et al. Systematic analysis of complex genetic interactions. Science
360 https://www.science.org/doi/10.1126/science.aa01729 (2018).

18. Taylor, M. B. & Ehrenreich, I. M. Higher-order genetic interactions and their
contribution to complex traits. Trends Genet. 31, 34-40 (2015).

19. Domingo, J., Diss, G. & Lehner, B. Pairwise and higher-order genetic
interactions during the evolution of a tRNA. Nature 558, 117-121 (2018).

20. Mullis, M. N., Matsui, T., Schell, R., Foree, R. & Ehrenreich, I. M. The complex
underpinnings of genetic background effects. Nat. Commun. 9, 3548 (2018).

21. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and
mutations. Cell 173, 371-385 el8 (2018).

22. Ellrott, K. et al. Scalable open science approach for mutation calling of tumor
exomes using multiple genomic pipelines. Cell Syst. 6, 271-281 €7 (2018).

23. Ding, L. et al. Perspective on oncogenic processes at the end of the beginning
of cancer genomics. Cell 173, 305-320 e10 (2018).

24. Domingo, J., Baeza-Centurion, P. & Lehner, B. The causes and consequences
of genetic interactions (epistasis). Annu Rev. Genomics Hum. Genet. 20,
433-460 (2019).

25. Costanzo, M. et al. Global genetic networks and the genotype-to-phenotype
relationship. Cell 177, 85-100 (2019).

26. Palmer, A. C. et al. Delayed commitment to evolutionary fate in antibiotic
resistance fitness landscapes. Nat. Commun. 6, 7385 (2015).

27. Poelwijk, F. ], Socolich, M. & Ranganathan, R. Learning the pattern of
epistasis linking genotype and phenotype in a protein. Nat. Commun. 10, 4213
(2019).

28. New, A. M. & Lehner, B. Harmonious genetic combinations rewire regulatory
networks and flip gene essentiality. Nat. Commun. 10, 3657 (2019).

29. Lozovsky, E. R., Daniels, R. F., Heffernan, G. D., Jacobus, D. P. & Hartl, D. L.
Relevance of higher-order epistasis in drug resistance. Mol. Biol. Evol. 38,
142-151 (2021).

30. Martincorena, I. et al. Universal patterns of selection in cancer and somatic
tissues. Cell 171, 1029-1041 e21 (2017).

31. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome
atlas. Cell 173, 321-337 el0 (2018).

32. Ng, P. C. & Henikoff, S. Accounting for human polymorphisms predicted to
affect protein function. Genome Res. 12, 436-446 (2002).

| (2021)12:7051 | https://doi.org/10.1038/s41467-021-27242-3 | www.nature.com/naturecommunications 9


https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://reactome.org/
https://depmap.org/portal/download/
https://depmap.org/portal/download/
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://www.synapse.org/#!Synapse:syn5049520
https://david.ncifcrf.gov/
https://reactome.org/
https://doi.org/10.1016/j.cell.2018.02.060
https://doi.org/10.1016/j.celrep.2018.09.082
https://doi.org/10.1038/s41586-020-2175-2
https://doi.org/10.1038/s41586-020-2175-2
https://doi.org/10.1038/s41467-018-04900-7
https://doi.org/10.1038/s41467-018-04900-7
https://doi.org/10.1038/s41588-020-0703-5
https://doi.org/10.1038/s41588-020-0703-5
https://github.com/SolipParkLab/CancerFitness
https://github.com/SolipParkLab/CancerFitness
https://www.science.org/doi/10.1126/science.aao1729
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

33. Adzhubei, L, Jordan, D.M. & Sunyaev, S.R. Predicting functional effect of
human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet.
Chapter 7, Unit 7 20 (2013).

34. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization
of the targets of focal somatic copy-number alteration in human cancers.
Genome Biol. 12, R41 (2011).

35. Tokheim, C. J., Papadopoulos, N., Kinzler, K. W., Vogelstein, B. & Karchin, R.
Evaluating the evaluation of cancer driver genes. Proc. Natl Acad. Sci. USA
113, 14330-14335 (2016).

36. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546-1558
(2013).

37. Saito, Y. et al. Landscape and function of multiple mutations within individual
oncogenes. Nature 582, 95-99 (2020).

38. Saghafinia, S., Mina, M., Riggi, N., Hanahan, D. & Ciriello, G. Pan-cancer
landscape of aberrant DNA methylation across human tumors. Cell Rep. 25,
1066-1080 €8 (2018).

39. Park, S., Supek, F. & Lehner, B. Systematic discovery of germline cancer
predisposition genes through the identification of somatic second hits. Nat.
Commun. 9, 2601 (2018).

40. Ripley, B.e.a. Package ‘mass’. Cran R (2013).

41. Park, S. & Lehner, B. Cancer type-dependent genetic interactions between
cancer driver alterations indicate plasticity of epistasis across cell types. Mol.
Syst. Biol. 11, 824 (2015).

42. Mina, M, Iyer, A,, Tavernari, D., Raynaud, F. & Ciriello, G. Discovering
functional evolutionary dependencies in human cancers. Nat. Genet. 52,
1198-1207 (2020).

43. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc.
4, 44-57 (2009).

44. TJassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48,
D498-D503 (2020).

45. Marcotte, R. et al. Essential gene profiles in breast, pancreatic, and ovarian
cancer cells. Cancer Discov. 2, 172-189 (2012).

Acknowledgements

We thank Luis Garcia-Jimeno for assistance with permutation. S.P. is supported by the
Agencia Estatal de Investigacion, Ministerio de Ciencia e Innovacién (MCIN/AEI/
10.13039/501100011033) through the RETOS project PID2019-109571RA-100. This
work was funded by the European Research Council (ERC) Starting grant (HYPER-
INSIGHT, 757700) to E.S. and ERC Consolidator (IR-DC, 616434) and Advanced
(MUTANOMICS, 883742) grants to B.L. F.S. and B.L. are funded by the ICREA Research
Professor program. S.P., F.S., and B.L. acknowledge the support of the Severo Ochoa
Centres of Excellence program to the CNIO, IRB Barcelona, and to the CRG (MCIN/
AEI1/10.13039/50110001103), respectively. B.L. and F.S. Work is funded with the grants
BFU2017-89488-P and RegioMut BFU2017-89833-P (MCIN/AEI /10.13039/
501100011033/FEDER “A way to make Europe”), respectively. B.L. is further supported

by the Bettencourt Schueller Foundation, the Agencia de Gestio d’Ajuts Universitaris i de
Recerca (2017 SGR 1322), and the Centres de Recerca de Catalunya (CERCA) program/
Generalitat de Catalunya. B.L. also acknowledges the support of the Spanish Ministry of
Economy, Industry, and Competitiveness to the European Molecular Biology Laboratory
(EMBL) partnership. The results shown here are in whole or part based upon data
generated by the TCGA Research Network.

Author contributions
S.P. performed all analyses. F.S. designed methods for testing interactions between mutation
and CNAs. S.P, F.S, and B.L. designed analyses, evaluated the results and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-27242-3.

Correspondence and requests for materials should be addressed to Solip Park, Fran
Supek or Ben Lehner.

Peer review information Nature Communications thanks Elena Kuzmin and the other
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

10 | (2021)12:7051 | https://doi.org/10.1038/s41467-021-27242-3 | www.nature.com/naturecommunications


https://doi.org/10.1038/s41467-021-27242-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Higher order genetic interactions switch cancer genes from two-hit to one-hit drivers
	Results
	Interactions between mutations and CNA in 10,000 tumors
	Four classes of driver genes
	Changes in the interactions between mutations and CNAs
	Third-order interactions switch genes from two-hit to one-hit drivers
	Second hits in the same pathway switch genes from two-hit to one-hit drivers

	Discussion
	Methods
	Sample preparation
	Somatic genomic alteration
	Somatic driver set
	Alternative epi/genomic alterations
	Statistical evaluation of mutation—CNAs association
	Functional annotation
	Essential genes from CRISPR&#x02013;nobreakCas9 and shRNA screening
	Software for statistical analyses

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




