445 research outputs found
Electronic and magnetic properties of BaFeO<sub>3</sub> on the Pt(111) surface in a quasicrystalline approximant structure
Perovskiteâlike ABO3 oxides Aâ=â(Ca, Sr, Ba) and Bâ=â(Ti, Mn, Fe, Co, Ni) show a large variety of structures and physical properties. Among them is BaTiO3 (BTO), one of the most investigated and used perovskites. In a BTO film on Pt(111), the first oxide quasicrystal was discovered. Herein, by means of firstâprinciple methods, the cubic and hexagonal phases of bulk BaFeO3 (BFO) are investigated. Both phases show ferromagnetic order. Monolayers and double layers of BFO are studied on a Pt(111) surface. The doubleâlayer configuration of the cubic and hexagonal phases is structurally inequivalent but both doubleâlayer films show antiferromagnetic order. In analogy to the BTO quasicrystal approximant structure on Pt(111), a corresponding BFO structure is investigated. The Fe atoms are surrounded by three oxygen atoms and the resulting FeO3 units are separated by barium atoms with the total stoichiometry Ba5Fe4O12
Establishment of a cell suspension culture of the halophyte Cakile maritima
Cakile maritima is a member of the Brassicaceae family also known as sea rocket. It is an annual succulent halophyte frequent in coastal dune vegetation in Mediterranean regions and Atlantic coasts from North Africa to the north of Europe. This halophyte presents a complex survival strategy at high salinity and its seeds contain up to 40% of an oil which could be suitable for biofuel production and other industrial applications. However, data concerning the cellular mechanisms allowing this plant to resist salinity are still lacking. Cell suspension cultures offer an in vitro system convenient for cell biology studies and biotechnological methods are still not developed for this putative crop. The present paper reports initiation of C. maritima cell suspension cultures from callus obtained from aerial parts of seedlings. The establishment of a suspension culture which preserves its salt resistance provides an opportunity to gain insights into C. maritima biology
A Field Range Bound for General Single-Field Inflation
We explore the consequences of a detection of primordial tensor fluctuations
for general single-field models of inflation. Using the effective theory of
inflation, we propose a generalization of the Lyth bound. Our bound applies to
all single-field models with two-derivative kinetic terms for the scalar
fluctuations and is always stronger than the corresponding bound for slow-roll
models. This shows that non-trivial dynamics can't evade the Lyth bound. We
also present a weaker, but completely universal bound that holds whenever the
Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page
Chern-Simons diffusion rate in a holographic Yang-Mills theory
Using holography, we compute the Chern-Simons diffusion rate of 4d gauge
theories constructed by wrapping D4-branes on a circle. In the model with
antiperiodic boundary conditions for fermions, we find that it scales like
in the high-temperature phase. With periodic fermions, this scaling
persists at low temperatures. The scaling is reminiscent of 6d hydrodynamic
behavior even at temperatures small compared to compactification scales of the
M5-branes from which the D4-branes descend. We offer a holographic explanation
of this behavior by adding a new entry to the known map between D4 and M5
hydrodynamics, and suggest a field theory explanation based on "deconstruction"
or "fractionization".Comment: 13 pages, misstatement in published version about low temperature
phase removed, main results unaffecte
Cold Nuclear Matter Effects on Dijet Productions in Relativistic Heavy-ion Reactions at LHC
We investigate the cold nuclear matter(CNM) effects on dijet productions in
high-energy nuclear collisions at LHC with the next-to-leading order
perturbative QCD. The nuclear modifications for dijet angular distributions,
dijet invariant mass spectra, dijet transverse momentum spectra and dijet
momentum imbalance due to CNM effects are calculated by incorporating EPS, EKS,
HKN and DS param-etrization sets of parton distributions in nucleus . It is
found that dijet angular distributions and dijet momentum imbalance are
insensitive to the initial-state CNM effects and thus provide optimal tools to
study the final-state hot QGP effects such as jet quenching. On the other hand,
the invariant mass spectra and the transverse momentum spectra of dijet are
generally enhanced in a wide region of the invariant mass or transverse
momentum due to CNM effects with a feature opposite to the expected suppression
because of the final-state parton energy loss effect in the QGP. The difference
of EPS, EKS, HKN and DS parametrization sets of nuclear parton distribution
functions is appreciable for dijet invariant mass spectra and transverse
momentum spectra at p+Pb collisions, and becomes more pronounced for those at
Pb+Pb reactions.Comment: 10 pages, 11 figure
Transplanckian axions !?
We discuss quantum gravitational effects in Einstein theory coupled to
periodic axion scalars to analyze the viability of several proposals to achieve
superplanckian axion periods (aka decay constants) and their possible
application to large field inflation models. The effects we study correspond to
the nucleation of euclidean gravitational instantons charged under the axion,
and our results are essentially compatible with (but independent of) the Weak
Gravity Conjecture, as follows: Single axion theories with superplanckian
periods contain gravitational instantons inducing sizable higher harmonics in
the axion potential, which spoil superplanckian inflaton field range. A similar
result holds for multi-axion models with lattice alignment (like the
Kim-Nilles-Peloso model). Finally, theories with axions can still achieve a
moderately superplanckian periodicity (by a factor) with no higher
harmonics in the axion potential. The Weak Gravity Conjecture fails to hold in
this case due to the absence of some instantons, which are forbidden by a
discrete gauge symmetry. Finally we discuss the realization of
these instantons as euclidean D-branes in string compactifications.Comment: 46 pages, 6 figures. Added references, clarifications, and missing
factor of 1/2 to instanton action. Conclusions unchange
Holonomy of the Ising model form factors
We study the Ising model two-point diagonal correlation function by
presenting an exponential and form factor expansion in an integral
representation which differs from the known expansion of Wu, McCoy, Tracy and
Barouch. We extend this expansion, weighting, by powers of a variable
, the -particle contributions, . The corresponding
extension of the two-point diagonal correlation function, , is shown, for arbitrary , to be a solution of the sigma
form of the Painlev{\'e} VI equation introduced by Jimbo and Miwa. Linear
differential equations for the form factors are obtained and
shown to have both a ``Russian doll'' nesting, and a decomposition of the
differential operators as a direct sum of operators equivalent to symmetric
powers of the differential operator of the elliptic integral . Each is expressed polynomially in terms of the elliptic integrals and . The scaling limit of these differential operators breaks the
direct sum structure but not the ``Russian doll'' structure. The previous -extensions, are, for singled-out values ( integers), also solutions of linear differential
equations. These solutions of Painlev\'e VI are actually algebraic functions,
being associated with modular curves.Comment: 39 page
Flavourful Production at Hadron Colliders
We ask what new states may lie at or below the TeV scale, with sizable
flavour-dependent couplings to light quarks, putting them within reach of
hadron colliders via resonant production, or in association with Standard Model
states. In particular, we focus on the compatibility of such states with
stringent flavour-changing neutral current and electric-dipole moment
constraints. We argue that the broadest and most theoretically plausible
flavour structure of the new couplings is that they are hierarchical, as are
Standard Model Yukawa couplings, although the hierarchical pattern may well be
different. We point out that, without the need for any more elaborate or
restrictive structure, new scalars with "diquark" couplings to standard quarks
are particularly immune to existing constraints, and that such scalars may
arise within a variety of theoretical paradigms. In particular, there can be
substantial couplings to a pair of light quarks or to one light and one heavy
quark. For example, the latter possibility may provide a flavour-safe
interpretation of the asymmetry in top quark production observed at the
Tevatron. We thereby motivate searches for diquark scalars at the Tevatron and
LHC, and argue that their discovery represents one of our best chances for new
insight into the Flavour Puzzle of the Standard Model.Comment: 18 pp., 8 figures, references adde
Simplified Models for LHC New Physics Searches
This document proposes a collection of simplified models relevant to the
design of new-physics searches at the LHC and the characterization of their
results. Both ATLAS and CMS have already presented some results in terms of
simplified models, and we encourage them to continue and expand this effort,
which supplements both signature-based results and benchmark model
interpretations. A simplified model is defined by an effective Lagrangian
describing the interactions of a small number of new particles. Simplified
models can equally well be described by a small number of masses and
cross-sections. These parameters are directly related to collider physics
observables, making simplified models a particularly effective framework for
evaluating searches and a useful starting point for characterizing positive
signals of new physics. This document serves as an official summary of the
results from the "Topologies for Early LHC Searches" workshop, held at SLAC in
September of 2010, the purpose of which was to develop a set of representative
models that can be used to cover all relevant phase space in experimental
searches. Particular emphasis is placed on searches relevant for the first
~50-500 pb-1 of data and those motivated by supersymmetric models. This note
largely summarizes material posted at http://lhcnewphysics.org/, which includes
simplified model definitions, Monte Carlo material, and supporting contacts
within the theory community. We also comment on future developments that may be
useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results
from "Topologies for Early LHC Searches" workshop (SLAC, September 2010).
Supplementary material can be found at http://lhcnewphysics.or
Supersymmetric Froggatt-Nielsen Models with Baryon- and Lepton-Number Violation
We systematically investigate the embedding of U(1)_X Froggatt-Nielsen models
in (four-dimensional) local supersymmetry. We restrict ourselves to models with
a single flavon field. We do not impose a discrete symmetry by hand, e.g.
R-parity, baryon-parity or lepton-parity. Thus we determine the order of
magnitude of the baryon- and/or lepton violating coupling constants through the
Froggatt-Nielsen mechanism. We then scrutinize whether the predicted coupling
constants are in accord with weak or GUT scale constraints. Many models turn
out to be incompatible.Comment: Final version, references added, minor corrections; LaTeX, 46 page
- âŠ