12,907 research outputs found

    Measuring the Decorrelation Times of Fourier Modes in Simulations

    Full text link
    We describe a method to study the rate at which modes decorrelate in numerical simulations. We study the XY model updated with the Metropolis and Wolff dynamics respectively and compute the rate at which each eigenvector of the dynamics decorrelates. Our method allows us to identify the decorrelation time for each mode separately. We find that the autocorrelation function of the various modes is markedly different for the `local' Metropolis compared to the `non-local' Wolff dynamics. Equipped with this new insight, it may be possible to devise highly efficient algorithms.Comment: 16 pp (LaTeX), PUPT-1378 , IASSNS-HEP-93/

    Sub-Riemannian Fast Marching in SE(2)

    Full text link
    We propose a Fast Marching based implementation for computing sub-Riemanninan (SR) geodesics in the roto-translation group SE(2), with a metric depending on a cost induced by the image data. The key ingredient is a Riemannian approximation of the SR-metric. Then, a state of the art Fast Marching solver that is able to deal with extreme anisotropies is used to compute a SR-distance map as the solution of a corresponding eikonal equation. Subsequent backtracking on the distance map gives the geodesics. To validate the method, we consider the uniform cost case in which exact formulas for SR-geodesics are known and we show remarkable accuracy of the numerically computed SR-spheres. We also show a dramatic decrease in computational time with respect to a previous PDE-based iterative approach. Regarding image analysis applications, we show the potential of considering these data adaptive geodesics for a fully automated retinal vessel tree segmentation.Comment: CIARP 201

    Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space

    Full text link
    We solve explicitly the two-dimensional harmonic oscillator and the harmonic oscillator in a background magnetic field in noncommutative phase-space without making use of any type of representation. A key observation that we make is that for a specific choice of the noncommutative parameters, the time reversal symmetry of the systems get restored since the energy spectrum becomes degenerate. This is in contrast to the noncommutative configuration space where the time reversal symmetry of the harmonic oscillator is always broken.Comment: 7 pages Late

    Graph Database Solution for Higher Order Spatial Statistics in the Era of Big Data

    Full text link
    We present an algorithm for the fast computation of the general NN-point spatial correlation functions of any discrete point set embedded within an Euclidean space of Rn\mathbb{R}^n. Utilizing the concepts of kd-trees and graph databases, we describe how to count all possible NN-tuples in binned configurations within a given length scale, e.g. all pairs of points or all triplets of points with side lengths <rmax<r_{max}. Through bench-marking we show the computational advantage of our new graph based algorithm over more traditional methods. We show that all 3-point configurations up to and beyond the Baryon Acoustic Oscillation scale (∼\sim200 Mpc in physical units) can be performed on current SDSS data in reasonable time. Finally we present the first measurements of the 4-point correlation function of ∼\sim0.5 million SDSS galaxies over the redshift range 0.43<z<0.70.43<z<0.7.Comment: 9 pages, 8 figures, submitte

    Hyperbolic conservation laws on the sphere. A geometry-compatible finite volume scheme

    Get PDF
    We consider entropy solutions to the initial value problem associated with scalar nonlinear hyperbolic conservation laws posed on the two-dimensional sphere. We propose a finite volume scheme which relies on a web-like mesh made of segments of longitude and latitude lines. The structure of the mesh allows for a discrete version of a natural geometric compatibility condition, which arose earlier in the well-posedness theory established by Ben-Artzi and LeFloch. We study here several classes of flux vectors which define the conservation law under consideration. They are based on prescribing a suitable vector field in the Euclidean three-dimensional space and then suitably projecting it on the sphere's tangent plane; even when the flux vector in the ambient space is constant, the corresponding flux vector is a non-trivial vector field on the sphere. In particular, we construct here "equatorial periodic solutions", analogous to one-dimensional periodic solutions to one-dimensional conservation laws, as well as a wide variety of stationary (steady state) solutions. We also construct "confined solutions", which are time-dependent solutions supported in an arbitrarily specified subdomain of the sphere. Finally, representative numerical examples and test-cases are presented.Comment: 22 pages, 10 figures. This is the third part of a series; see also arXiv:math/0612846 and arXiv:math/061284

    Genetic Correlations in Mutation Processes

    Full text link
    We study the role of phylogenetic trees on correlations in mutation processes. Generally, correlations decay exponentially with the generation number. We find that two distinct regimes of behavior exist. For mutation rates smaller than a critical rate, the underlying tree morphology is almost irrelevant, while mutation rates higher than this critical rate lead to strong tree-dependent correlations. We show analytically that identical critical behavior underlies all multiple point correlations. This behavior generally characterizes branching processes undergoing mutation.Comment: revtex, 8 pages, 2 fig

    Steering proton migration in hydrocarbons using intense few-cycle laser fields

    Get PDF
    Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to control the movement of nuclei with tailored light, within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics are monitored using coincident 3D momentum imaging spectroscopy, and described with a quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wavepacket by the intense off-resonant laser field.Comment: 5 pages, 4 figure

    Universal scaling in sports ranking

    Full text link
    Ranking is a ubiquitous phenomenon in the human society. By clicking the web pages of Forbes, you may find all kinds of rankings, such as world's most powerful people, world's richest people, top-paid tennis stars, and so on and so forth. Herewith, we study a specific kind, sports ranking systems in which players' scores and prize money are calculated based on their performances in attending various tournaments. A typical example is tennis. It is found that the distributions of both scores and prize money follow universal power laws, with exponents nearly identical for most sports fields. In order to understand the origin of this universal scaling we focus on the tennis ranking systems. By checking the data we find that, for any pair of players, the probability that the higher-ranked player will top the lower-ranked opponent is proportional to the rank difference between the pair. Such a dependence can be well fitted to a sigmoidal function. By using this feature, we propose a simple toy model which can simulate the competition of players in different tournaments. The simulations yield results consistent with the empirical findings. Extensive studies indicate the model is robust with respect to the modifications of the minor parts.Comment: 8 pages, 7 figure

    Time-Dependent Behavior of Linear Polarization in Unresolved Photospheres, With Applications for The Hanle Effect

    Full text link
    Aims: This paper extends previous studies in modeling time varying linear polarization due to axisymmetric magnetic fields in rotating stars. We use the Hanle effect to predict variations in net line polarization, and use geometric arguments to generalize these results to linear polarization due to other mechanisms. Methods: Building on the work of Lopez Ariste et al., we use simple analytic models of rotating stars that are symmetric except for an axisymmetric magnetic field to predict the polarization lightcurve due to the Hanle effect. We highlight the effects for the variable line polarization as a function of viewing inclination and field axis obliquity. Finally, we use geometric arguments to generalize our results to linear polarization from the weak transverse Zeeman effect. Results: We derive analytic expressions to demonstrate that the variable polarization lightcurve for an oblique magnetic rotator is symmetric. This holds for any axisymmetric field distribution and arbitrary viewing inclination to the rotation axis. Conclusions: For the situation under consideration, the amplitude of the polarization variation is set by the Hanle effect, but the shape of the variation in polarization with phase depends largely on geometrical projection effects. Our work generalizes the applicability of results described in Lopez Ariste et al., inasmuch as the assumptions of a spherical star and an axisymmetric field are true, and provides a strategy for separating the effects of perspective from the Hanle effect itself for interpreting polarimetric lightcurves.Comment: 6 pages; 4 figures. Includes an extra figure found only in this preprint versio
    • …
    corecore