15 research outputs found

    Plasmid-Encoded Regulator of Extracellular Proteases in Bacillus anthracis

    No full text
    Bacillus anthracis Sterne cured of the pXO1 plasmid had enhanced secreted protease activity during the postexponential phase but no change in hemolytic or lecithinase activities. A zymogen profile revealed at least six proteases, including serine, metal, and perhaps cysteine types. There were similar amounts of protease secreted by the closely related species Bacillus cereus and Bacillus thuringiensis, but the patterns differed. Among the pXO1 plasmid-encoded proteins, there is a tetratricopeptide protein designated Cot43 that is related to the Rap proteins of Bacillus subtilis and the PlcR pleiotropic regulator of secreted enzymes and toxins in B. thuringiensis. A disruption of the cot43 gene resulted in overproduction of several proteases to a somewhat greater extent than in the plasmid-cured strain. Transformation of either of these strains with a clone of the cot43 gene resulted in the inhibition of accumulation of some of the proteases and induction of at least one. On the basis of lacZ fusions, transcription of the cot43 gene increased in late exponential cells at the time of protease accumulation. The expression of lacZ fusions to the upstream regions of two B. anthracis extracellular protease genes was greater in the strain with the disruption of cot43 than in the Sterne strain, indicating regulation at the level of transcription. In B. anthracis, a pXO1 plasmid-encoded protein directly modulates or indirectly regulates the transcription of genes for several chromosomally encoded extracellular proteases

    Single Diastereomer of a Macrolactam Core Binds Specifically to Myeloid Cell Leukemia 1 (MCL1)

    No full text
    A direct binding screen of 100 000 sp<sup>3</sup>-rich molecules identified a single diastereomer of a macrolactam core that binds specifically to myeloid cell leukemia 1 (MCL1). A comprehensive toolbox of biophysical methods was applied to validate the original hit and subsequent analogues and also established a binding mode competitive with NOXA BH3 peptide. X-ray crystallography of ligand bound to MCL1 reveals a remarkable ligand/protein shape complementarity that diverges from previously disclosed MCL1 inhibitor costructures

    A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1

    Get PDF
    <div><p>Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors.</p></div

    The structure of Apo MBP-MCL1 determined at 1.90 Ă….

    No full text
    <p>(A) The MBP domain (red) is connected by a short GS linker (orange) to MCL1 173–321 (blue). A portion of alpha helix four is not ordered in the structure (red dashed-line). Maltose ligand is shown in yellow. (B) The MCL1 domain is structurally very similar to the NMR structure of Apo-MCL1 (gray).</p

    Comparison of PDB 4HW3 and MBP-MCL1 with fragment 4.

    No full text
    <p>The structure of MBP-MCL1 with fragment <b>4</b> (yellow) determined to 2.4 Å (blue) overlaid with the structure of MCL1 171–323 determined at 2.4 Å (PDB ID 4HW3, gray). The carboxylic acid of 4HW3 adopts multiple conformations depending on the chain; only chain A is shown for clarity.</p

    The conformational flexibility of the binding pocket of MCL1.

    No full text
    <p>Surface representations are shown as side views and ligands are shown as yellow sticks. (A and B) Fragment 4 maps onto L78 of NoxaB from PDB ID 2NLA, with only minor structural perturbation of the BH3-binding groove of MCL1. In contrast, binding of fragment 6 creates a significant pocket (C) which is further expanded upon binding of ligand 1 (D).</p
    corecore