11 research outputs found

    Palaeoproterozoic reworking of early Archaean lithospheric blocks: Rocks and zircon records from charnockitoids in Volgo-Uralia

    Get PDF
    The Volgo-Uralia segment, which constitutes one fourth of the East European Craton, is covered by sedimentary deposits. From geophysical studies and examination of thousands of drillcores, Volgo-Uralia has been recognised as a vast high-grade terrain with a complex crustal history extending from the Palaeoarchaean to the Palaeoproterozoic. Our recent studies are focused on the search for the oldest crust formation event by extracting whole rock Sm-Nd and zircon U-Th-Pb and Lu-Hf isotope information from samples recovered by drilling in southern Volgo-Uralia. Particular attention is devoted to the Kolyvan charnockitoid rock suite, which makes up several large areas of gneisses and granitoids of enderbite, charnockite and tonalite composition. The zircon from the granitoids show complex internal structures and consists of large magmatic cores with oscillatory zoning, surrounded by CL black-and-bright bands of metamorphic rims. The crystallisation age of the cores is defined as 3140 ± 7 Ma (SHRIMP) and 3127 ± 46 Ma (LA-ICPMS), while the CL-bright rims are dated at 1950 ± 25 Ma (LA-ICPMS). The ingressive recrystallisation of primary magmatic zircon correlates with depletion in REE, which is observed in each studied core-rim pair. No differences in O-isotopic compositions have been detected between the cores and the rims. δO18 values with an average of 5.8 ± 0.3‰ (1SD) implying that no supracrustal rocks were involved in the source of the Kolyvan melts. The Hf-isotope compositions of magmatic cores (−3 to −9 εHfT) and metamorphic rims (−14 to −28 εHfT), and their similar crustal model ages from 3.42 to 3.86 Ga indicate Eo- to Palaeoarchaean crustal sources for the charnockitic magmas. Sm-Nd model ages of ca 3.46 Ga for the Kolyvan rocks are consistent with the zircon Hf-isotope data and indicate a long crustal prehistory of a source of the Mesoarchaean magmas. We conclude that the Mesoarchaean Kolyvan suite rocks was formed by reworking of Eo- to Palaeoarchaean lithosphere, which probably had been widespread throughout Volgo-Uralia. The obtained geochemical and isotope data can be reconciled in a model of deep mantle-plume activity at 3.1 Ga causing mantle underplating, extension of the Palaeoarchaean crust and high-T magmatism

    Протокол функционального обследования аноректальной зоны и классификация нарушений: международный консенсус и Российские рекомендации

    Get PDF
    This manuscript summarizes consensus reached by the International Anorectal Physiology Working Group (IAPWG) for the performance, terminology used, and interpretation of anorectal function testing including anorectal manometry (focused on high-resolution manometry), the rectal sensory test, and the balloon expulsion test. Based on these measurements, a classification system for disorders of anorectal function is proposed. Aim to provide information about methods of diagnosis and new classification of functional anorectal disorders to a wide range of specialists general practitioners, therapists, gastroenterologists, coloproctologists all who face the manifestations of these diseases in everyday practice and determine the diagnostic and therapeutic algorithm. Current paper provides agreed statements of IAPWG Consensus and comments (in italics) of Russian experts on real-world practice, mainly on methodology of examination. These comments in no way intended to detract from the provisions agreed by the international group of experts. We hope that these comments will help to improve the quality of examination based on the systematization of local experience with the use of the methods discussed and the results obtained. Key recommendations: the International Anorectal Physiology Working Group protocol for the performance of anorectal function testing recommends a standardized sequence of maneuvers to test rectoanal reflexes, anal tone and contractility, rectoanal coordination, and rectal sensation. Major findings not seen in healthy controls defined by the classification are as follows: rectoanal areflexia, anal hypotension and hypocontractility, rectal hyposensitivity, and hypersensitivity. Minor and inconclusive findings that can be present in health and require additional information prior to diagnosis include anal hypertension and dyssynergia

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Earth: Atmospheric Evolution of a Habitable Planet

    Full text link
    Our present-day atmosphere is often used as an analog for potentially habitable exoplanets, but Earth's atmosphere has changed dramatically throughout its 4.5 billion year history. For example, molecular oxygen is abundant in the atmosphere today but was absent on the early Earth. Meanwhile, the physical and chemical evolution of Earth's atmosphere has also resulted in major swings in surface temperature, at times resulting in extreme glaciation or warm greenhouse climates. Despite this dynamic and occasionally dramatic history, the Earth has been persistently habitable--and, in fact, inhabited--for roughly 4 billion years. Understanding Earth's momentous changes and its enduring habitability is essential as a guide to the diversity of habitable planetary environments that may exist beyond our solar system and for ultimately recognizing spectroscopic fingerprints of life elsewhere in the Universe. Here, we review long-term trends in the composition of Earth's atmosphere as it relates to both planetary habitability and inhabitation. We focus on gases that may serve as habitability markers (CO2, N2) or biosignatures (CH4, O2), especially as related to the redox evolution of the atmosphere and the coupled evolution of Earth's climate system. We emphasize that in the search for Earth-like planets we must be mindful that the example provided by the modern atmosphere merely represents a single snapshot of Earth's long-term evolution. In exploring the many former states of our own planet, we emphasize Earth's atmospheric evolution during the Archean, Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of potential atmospheric trajectories into the distant future, many millions to billions of years from now. All of these 'Alternative Earth' scenarios provide insight to the potential diversity of Earth-like, habitable, and inhabited worlds.Comment: 34 pages, 4 figures, 4 tables. Review chapter to appear in Handbook of Exoplanet

    Major zircon megacryst suites of the Indo-Pacific lithospheric margin (ZIP) and their petrogenetic and regional implications

    No full text
    corecore