126 research outputs found

    Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms

    Get PDF
    In the present work we reviewed recent advances concerning neuroprotective/neurotrophic effects of acute or chronic nicotine exposure, and the signalling pathways mediating these effects, including mechanisms implicated in nicotine addiction and nAChR desensitization. Experimental and clinical data largely indicate long-lasting effects of nicotine and nicotinic agonists that imply a neuroprotective/neurotrophic role of nAChR activation, involving mainly alpha 7 and alpha 4 beta 2 nAChR subtypes, as evidenced using selective nAChR agonists. Compounds interacting with neuronal nAChRs have the potential to be neuroprotective and treatment with nAChR agonists elicits long-lasting neurotrophic effects, e.g. improvement of cognitive performance in a variety of behavioural tests in rats, monkeys and humans. Nicotine addiction, which is mediated by interaction with nACh receptors, is believed to involve the modification of signalling cascades that modulate synaptic plasticity and gene expression. Desensitization, in addition to protecting cells from uncontrolled excitation, is recently considered as a form of signal plasticity. nAChR can generate these longe-lasting effects by elaboration of complex intracellular signals that mediate medium to long-term events crucial for neuronal maintenance, survival and regeneration. Although a comprehensive survey of the gene-based molecular mechanisms that underlie nicotine effects has yet not been performed a growing amount of data is beginning to improve our understanding of signalling mechanisms that lead to neurotrophic/neuroprotective responses. Evidence for an involvement of the fibroblast growth factor-2 gene in nAChR mechanisms mediating neuronal survival, trophism and plasticity has been obtained. However, more work is needed to establish the mechanisms involved in the effects of nicotinic receptor subtype activation from cognition-enhancing and neurotrophic effects to smoking behaviour and to determine more precisely the therapeutic objectives in potential nicotinic drug treatments of neurodegenerative diseases.In the present work we reviewed recent advances concerning neuroprotective/neurotrophic effects of acute or chronic nicotine exposure, and the signalling pathways mediating these effects, including mechanisms implicated in nicotine addiction and nAChR desensitization. Experimental and clinical data largely indicate long-lasting effects of nicotine and nicotinic agonists that imply a neuroprotective/neurotrophic role of nAChR activation, involving mainly alpha 7 and alpha 4 beta 2 nAChR subtypes, as evidenced using selective nAChR agonists. Compounds interacting with neuronal nAChRs have the potential to be neuroprotective and treatment with nAChR agonists elicits long-lasting neurotrophic effects, e.g. improvement of cognitive performance in a variety of behavioural tests in rats, monkeys and humans. Nicotine addiction, which is mediated by interaction with nACh receptors, is believed to involve the modification of signalling cascades that modulate synaptic plasticity and gene expression. Desensitization, in addition to protecting cells from uncontrolled excitation, is recently considered as a form of signal plasticity. nAChR can generate these longe-lasting effects by elaboration of complex intracellular signals that mediate medium to long-term events crucial for neuronal maintenance, survival and regeneration. Although a comprehensive survey of the gene-based molecular mechanisms that underlie nicotine effects has yet not been performed a growing amount of data is beginning to improve our understanding of signalling mechanisms that lead to neurotrophic/neuroprotective responses. Evidence for an involvement of the fibroblast growth factor-2 gene in nAChR mechanisms mediating neuronal survival, trophism and plasticity has been obtained. However, more work is needed to establish the mechanisms involved in the effects of nicotinic receptor subtype activation from cognition-enhancing and neurotrophic effects to smoking behaviour and to determine more precisely the therapeutic objectives in potential nicotinic drug treatments of neurodegenerative diseases

    mGluR2/3 agonist LY379268, by enhancing the production of GDNF, induces a time-related phosphorylation of RET receptor and intracellular signaling Erk1/2 in mouse striatum.

    Get PDF
    In the present study we aimed to verify if the enhancement of glial cell line-derived neurotrophic factor (GDNF) production in mouse striatum following treatment with LY379268 may also induce in the nigrostriatal system a time-related activation of RET receptor and its specific intracellular signaling. For this purpose, we have investigated the effects of LY379268 treatment on RET phosphorylation at the Tyr1062 and on downstream signaling Erk1/2, Akt and PLCγ1 pathway activation. The results showed that treatment with LY379268 (3 mg/kg) induces a significant increase of GDNF levels and time-related RET and Erk1/2 phosphorylation in the striatum. These increases were detected at 24 h and 48 h following LY379268 treatment. No changes were observed in the Akt and PLCγ1 phosphorylation levels. Similar results for p-Erk1/2 were observed in the substantia nigra. A complete block of LY379268 effect on striatal RET and p-Erk1/2 phosphorylation was observed in mice intrastriatal injected with anti-GDNF antibodies, suggesting a correlation between GDNF upregulation and RET activation. Overall, with present data we have shown that activation of mGluR2/3 receptors by LY379268 may be particularly promising for nigrostriatal dopaminergic system protection by enhancing striatal levels of GDNF/RET trophic system activity

    Identification of calcium sensing receptor (CaSR) mRNA-expressing cells in normal and injured rat brain

    Get PDF
    Calcium sensing receptor (CaSR), isolated for the first time from bovine and human parathyroid, is a G-protein-coupled receptors that has been involved in diverse physiological functions. At present a complete in vivo work on the identification of CaSR mRNA-expressing cells in the adult brain lacks and this investigation was undertaken in order to acquire more information on cell type expressing CaSR mRNA in the rat brain and to analyse for the first time its expression in different experimental models of brain injury. The expression of CaSR mRNAs was found mainly in scattered cells throughout almost all the brain regions. A double labeling analysis showed a colocalization of CaSR mRNA expression in neurons and oligodendrocytes, whereas it was not found expressed both in the microglia and in astrocytes. One week after kainate-induced seizure CaSR was found in the injured CA3 region of the hippocampus and very interestingly it was found up-regulated in the neurons of CA1-CA2 and dentate gyrus. Similarly, 1 week following ibotenic acid injection in the hippocampus, CaSR mRNA expression was increased in oligodendrocytes both in the lesioned area and in the contralateral CA1-CA3 pyramidal cell layers and dentate gyrus. One week after needle-induced mechanical lesion an increase of labeled cells expressing CaSR mRNA was observed along the needle track. In conclusion, the present results contribute to extend available data on cell type-expressing CaSR in normal and injured brain and could spur to understand the role of CaSR in repairing processes of brain injury

    Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6.3-cells.

    Get PDF
    Resveratrol, a polyphenol derived e.g. from red grapes, has been shown to mediate several positive biological actions such as protection of cells against oxidative stress. It can also influence cell signaling, but the mechanisms behind its antioxidant properties are largely unknown. Here we show that RSV reduces oxidative stress and enhances cell survival in PC6.3 cells depending on the concentration. In these cells, RSV increased the levels of antioxidants, SOD2 and TRX2, and of X chromosome-linked inhibitor of apoptosis protein. RSV also activated NFκB signaling as shown using luciferase reporter constructs. These findings show that RSV regulates oxidative stress and mitochondrial antioxidants in neuronal cells. This may contribute to cell protection in various brain disorders

    Connexin36 (Cx36) expression and protein detection in the mouse carotid body and myenteric plexus

    Get PDF
    Although connexin36 (Cx36) has been studied in several tissues, it is notable that no data are available on Cx36 expression in the carotid body and the intestine. The present study was undertaken to evaluate using immunohistochemistry, PCR and Western blotting procedures, whether Cx36 was expressed in the mouse carotid body and in the intestine at ileum and colon level. In the carotid body, Cx36 was detected as diffuse punctate immunostaining and as protein by Western blotting and mRNA by RT-PCR. Cx36 punctate immunostaining was also evident in the intestine with localization restricted to the myenteric plexus of both the ileum and the colon, and this detection was also confirmed by Western blotting and RT-PCR. All the data obtained were validated using Cx36 knockout mice. Taken together the present data on localization of Cx36 gap-junctions in two tissues of neural crest-derived neuroendocrine organs may provide an anatomical basis for future functional investigations

    Current disease modifying approaches to treat Parkinson's disease

    Get PDF
    Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.Peer reviewe

    Lack of Dystrophin Affects Bronchial Epithelium in mdx Mice

    Get PDF
    Mild exercise training may positively affect the course of Duchenne Muscular Dystrophy (DMD). Training causes mild bronchial epithelial injury in both humans and mice, but no study assessed the effects of exercise in mdx mice, a well known model of DMD. The airway epithelium was examined in mdx (C57BL/10ScSn-Dmdmdx) mice, and in wild type (WT, C57BL/10ScSc) mice either under sedentary conditions (mdx-SD, WT-SD) or during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days of training (5 d/wk for 6 weeks), epithelial morphology and markers of regeneration, apoptosis, and cellular stress were assessed. The number of goblet cells in bronchial epithelium was much lower in mdx than in WT mice under all conditions. At 30 days, epithelial regeneration (PCNA positive cells) was higher in EX than SD animals in both groups; however, at 45 days, epithelial regeneration decreased in mdx mice irrespective of training, and the percentage of apoptotic (TUNEL positive) cells was higher in mdx-EX than in WT-EX mice. Epithelial expression of HSP60 (marker of stress) progressively decreased, and inversely correlated with epithelial apoptosis (r=-0.66, P=0.01) only in mdx mice. Lack of dystrophin in mdx mice appears associated with defective epithelial differentiation, and transient epithelial regeneration during mild exercise training. Hence, lack of dystrophin might impair repair in bronchial epithelium, with potential clinical consequences in DMD patients
    • …
    corecore