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Abstract Parkinson’s disease (PD is a progressive neu-

rological disorder characterized by the degeneration and

death of midbrain dopamine and non-dopamine neurons in

the brain leading to motor dysfunctions and other symp-

toms, which seriously influence the quality of life of PD

patients. The drug L-dopa can alleviate the motor symp-

toms in PD, but so far there are no rational therapies

targeting the underlying neurodegenerative processes.

Despite intensive research, the molecular mechanisms

causing neuronal loss are not fully understood which has

hampered the development of new drugs and disease-

modifying therapies. Neurotrophic factors are by virtue of

their survival promoting activities attract candidates to

counteract and possibly halt cell degeneration in PD. In

particular, studies employing glial cell line-derived neu-

rotrophic factor (GDNF) and its family member neurturin

(NRTN), as well as the recently described cerebral dopa-

mine neurotrophic factor (CDNF) and the mesencephalic

astrocyte-derived neurotrophic factor (MANF) have shown

positive results in protecting and repairing dopaminergic

neurons in various models of PD. Other substances with

trophic actions in dopaminergic neurons include neu-

ropeptides and small compounds that target different

pathways impaired in PD, such as increased cell stress,

protein handling defects, dysfunctional mitochondria and

neuroinflammation. In this review, we will highlight the

recent developments in this field with a focus on trophic

factors and substances having the potential to beneficially

influence the viability and functions of dopaminergic

neurons as shown in preclinical or in animal models of PD.
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Introduction

Parkinson’s disease (PD) is after Alzheimer’s disease the

second most common neurodegenerative disorder and

affects about 1 % of the elderly population. Currently there

are 7–8 million patients with PD. A known risk factor for

PD is age suggesting that the prevalence of PD is likely to

increase among the aging population worldwide. The debut

of the disease is usually around the age of 60 with a pro-

gress of symptoms over time. Like other human diseases

PD has a subclinical phase and a clinical phase with overt

symptoms that bring the patient to the doctor. The clinical

manifestation of PD is associated with severe motor

symptoms such as resting tremor, rigidity, hypokinesia and

gait dysfunctions. This is associated with the decline in

dopamine levels, and with the degeneration and loss of

dopaminergic neurons in the substantia nigra pars com-

pacta (SNpc) leading to alterations in nigrostrial neuronal

circuitries. However, patients afflicted with PD have also

various non-motor symptoms such as impairment of smell,
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autonomic dysfunctions, depression, lack of motivation,

sleep disorders and later on reduced cognitive abilities and

dementia. The ultimate goal of a sustainable disease-

modifying treatment in PD is to slow down or even stop

disease progression by addressing the degenerative process

in all different types of neurons. Ideally, in disease-modi-

fying therapies degenerating neurons can be regenerated

and the functional activity of the remaining neurons gets

enhanced. It is important to emphasise that neuroprotective

strategies should be directed to the presymptomatic phase

of the disease so as to restrain the continuous loss of viable

neurons in PD. For this, the development of novel

biomarkers and diagnostics are urgent and prerequisites for

a better treatment of PD in the future.

Basic research into the genetics and pathophysiology of

PD has increased our understanding about the fundamental

processes causing neurodegeneration and cell dysfunctions

and helped to identify novel and promising targets for

neuroprotection. Here, we will discuss possible neuropro-

tective strategies to target cellular events occurring in PD

such as increased endoplasmic reticulum (ER) stress,

mitochondria dysfunctions, protein aggregation as well as

neuroinflammation. We also review recent developments in

the use of neurotrophic factors and disease-modifying

drugs with potentials to slow the disease process and to

provide recovery of neuronal functions in PD.

Genetics and pathogenetic mechanisms in PD

Despite intense research on pathogenetic mechanisms, we

still do know little about the primary insult(s) that trigger

changes in vulnerable neurons in PD at the initial stage of

the disease. However, there is increasing number of genes

that have been identified that predispose to motor symp-

toms and PD. Studies of the genetics of PD have revealed

alterations in specific genes and proteins that are linked to

the disease [1, 2]. These include mutations in the genes for

a-synuclein (a-syn) also called PARK1, Parkin/PARK2,

PINK-1/PARK6, DJ-1/PARK7, LRRK2/PARK8 and oth-

ers (see Table 1). It is interesting to note that mutations in

the a-syn were the first that clearly linked genes to PD. The

functions of these gene products are associated with

specific intracellular pathways and cell organelle systems

that contribute to the pathophysiology of PD (Table 1).

Around 5–10 % of all PD cases are familial forms, whereas

the majority of patients have a sporadic form of PD with no

obvious or so far identified genetic cause.

Pathogenetic mechanisms in PD include mitochondrial

dysfunctions, calcium dysregulation, altered cell signaling,

increased oxidative and ER stress, as well as a disturbed

protein handling (proteostasis) with the accumulation and

aggregation of unfolded or mutant proteins accompanied

by defects in autophagy or in the ubiquitin–proteasome

system (UPS) [3–5]. Moreover, an increased neuroinflam-

mation and a reduced trophic support in the brain are also

thought to contribute to PD. The selective vulnerability of

dopamine neurons in SNpc in PD was recently related to an

intrinsic pacemaker activity driven by a specific subtype of

L-type voltage-dependent Ca2? channels expressed by

these neurons [6]. The dopaminergic neurons are thought to

have a high-energy demand reflected by an enhanced rate

of oxidative phosphorylation and with increased production

of reactive oxidative species (ROS) causing oxidative

stress [7]. A better understanding of the disease-causing

processes in PD is a prerequisite for the development of

neuroprotective treatments and novel disease-modifying

agents in PD.

Protein aggregation and misfolding in PD

PD is characterized by the presence of intraneuronal

inclusions identified in post-mortem tissue and named

Lewy bodies in cell soma and Lewy neurites in neuronal

processes (reviewed in 8). The protein aggregates contain

misfolded a-syn which is a presynaptic protein with a

physiologic role linked to regulation of vesicle turnover

and neurotransmission [8, 9]. a-syn is normally present as

monomer in cells but mutant or misfolded a-syn accumu-

lates as oligomers or filaments in different neuronal

compartments, in axons, in the cell soma and in dendrites

[8, 9]. Large-scale proteomic studies have shown that

monomeric and oligomeric a-syn can interact with a

specific set of cellular proteins [10]. a-syn is also known to

interact with intracellular membranes and organelles which

may help to explain its multiple actions in pathophysio-

logical processes leading to PD (see below). The

significance of a-syn in pathogenesis of PD is revealed by

mutations in a-syn and by a-syn gene duplication or trip-

lication which were also shown to cause PD [1, 2].

a-syn is usually degraded by autophagy–lysosome sys-

tem including chaperon-mediated autophagy [11] and

disturbances in autophagy-lysosomal system can contribute

to its toxicity and accumulation in the cell and triggering

ER stress [12, 13]. A recent development regarding PD is

the finding that about 5–10 % of PD patients, depending on

the population backgroundis estimated to carry mutations

in the lysosomal enzyme, glucocerebrosidase (GBA)

making it a major risk factor for PD [14]. Homozygous

GBA mutations cause Gaucher disease (GD) a lysosomal

storage disorder with accumulation of the sphingolipid,

glucosylceramide that affects different organs [14]. A

major neurologic complication in GD is Parkinsonism with

clinical signs and Lewy body inclusions largely indistin-

guishable from sporadic PD. Heterozygote GD patients
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have an increased frequency of developing PD, and bio-

chemical analyses showed reduced GBA enzyme activity

in substantia nigra in PD patients with GBA mutations as

well as in sporadic PD [14, 15]. Recent data suggest that

accumulation of lipid substrates does not occur in brains of

PD patients with mutant GBA, suggesting other mecha-

nisms for neurodegeneration [16]. Studies have shown that

mutant GBA can accumulate in the ER and thereby may

cause ER stress [14]. There is further a functional rela-

tionship between GBA and a-syn levels in the cell [17] that

may provide novel targets for neuroprotection.

To understand the sequel and neuropathology of spo-

radic PD, Braak and colleagues characterized up to six

stages of the disease based upon immunoreactive a-syn

neuronal inclusions in autopsy material from PD patients

[18]. a-syn inclusions were initially observed in regions

such as the olfactory bulb and the dorsal motor nucleus of

the vagus nerve in the brain stem, thereafter spreading to

other neurons in the brain stem, amygdala, cortex and

striatum [18, 19]. Moreover, a-syn aggregates have been

detected in enteric neurons even before the diagnosis of

motor symptoms in PD patients. At later stages Lewy

pathology was widespread with worsening of clinical

symptoms in patients and with the decline in dopamine

concentration in the brain. Axonal transport is likely

involved in the spreading and transfer of a a-syn in the

brain as it follows specific anatomic tracts [9, 20]. There is

also some evidence that a-syn can propagate from cell to

cell via the extracellular space, and misfolded a-syn may

act as a seed for protein aggregation via a prion-like

mechanism [9, 20].

The vagal nerve has a widespread innervation to several

targets including internal organs in the body. Recent

studies have provided some evidence that the gut micro-

biome is altered in PD and related to motor phenotype [21].

It is so far unclear, what pathophysiological roles these

changes may play in the disease and whether such changes

could serve as biomarkers in PD.

Hindrance of a-syn spreading by blocking of extraneu-

ronal a-syn by specific compounds or using immunization

Table 1 Genes associated with familial forms of PD

Locus Gene Inheritance Disorder Function

PARK1,

PARK4

SNCA Autosomal dominant;

sporadic

Early onset PD Involved in synaptic vesicle formation

PARK2 Parkin Autosomal recessive;

sporadic

Juvenile and early onset PD E3 ligase

PARK6 PINK1 Autosomal recessive Early onset PD Mitochondrial kinase

PARK7 DJ-1 Autosomal recessive Early onset PD Involved in oxidative stress response

PARK8 LRRK2 Autosomal dominant;

sporadic

Late onset PD Protein kinase

PARK9 ATP13A2 Autosomal recessive Kufor–Rakeb syndrome P-type transport ATPase

Putative locus/gene

PARK 3 Unknown Autosomal dominant Late onset PD Unknown

PARK5 UCHL1 Autosomal dominant Late onset PD Ubiquitin-protein hydrolase

PARK10 Unknown Unclear Late onset PD Unknown

PARK11 GIGYF2 Autosomal dominant Late onset PD Involved in cellular insulin and insulin-like growth

factor response

PARK12 Unknown Risk factor Late onset PD Unknown

PARK13 Omi/

HTRA2

Autosomal dominant or risk

factor

Late onset PD Mitochondrial-targeted serine protease

PARK14 PLA2G6 Autosomal recessive Early onset dystonia-

parkinsonism

A2 phospholipase

PARK15 FBXO7 Autosomal recessive Early onset parkinsonian E3 ubiquitin protein ligase complex

PARK16 Unknown Risk factor Late onset PD Unknown

PARK17 VPS35 Autosomal dominant Late onset PD Component of the retrograde cargo-selective complex

PARK18 EIF4G1 Autosomal dominant Late onset PD Component of eIF4F complex at the ribosome

GBA Risk factor Early onset PD Lysosomal enzyme

DAT Risk factor Early onset PD Dopamine uptake

Modified from [1, 2]. SNCA a-synuclein, PINK1 PTEN induced putative kinase 1, DJ-1 protein deglycase DJ-1, LRRK2 leucine rich repeat

kinase 2, ATP13A2 ATPase type 13A2, UCHL1 ubiquitin carboxyl-terminal esterase L1, GIGYF2 GBR10 interacting GYF protein 2, Omi/

HTRA2 serine protease HTRA2, mitochondrial, PLA2G6 phospholipase A2, group VI, FBXO7 F-Box protein 7, VPS35 vacuolar protein sorting-

associated protein 35, EIF4G1 eukaryotic translation initiation factor 4 gamma1, GBA beta-glucocerebrosidase, DAT dopamine transporter
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strategies are promising approaches to reduce the burden of

a-syn in the brain to possibly halt the progression of PD

[20, 22]. Preclinical studies along these research lines have

shown promising results [22, 23], and currently various

immunotherapies based upon active (injection of recom-

binant a-syn) and passive immunization (injection of

domain-specific anti-a-syn antibodies) procedures are in

clinical testing or are being planned for PD patients

(Table 2). As reviewed recently the processing, oligomer-

ization and aggregation of intracellular a-syn are also

potential targets for the development of disease-modifying

therapies in PD showing encouraging results [20, 22].

ER stress in PD

The unfolded protein response (UPR) is a conserved cel-

lular process in the endoplasmic reticulum by which the

cells respond to oxidative stress, increased calcium levels

and a disturbed protein homeostasis with the accumulation

of misfolded, aggregated or mutant proteins in the ER that

are normally processed by the proteasome or autophagy

systems [24]. The UPR is usually protective and engages

specific signaling pathways and chaperones to restore cell

homeostasis and protein refolding (Fig. 1). However, pro-

longed and sustained UPR activation can lead to full blow

ER stress with the activation of pathways linked to cell

degeneration and finally triggering cell death [24]. Exper-

imental evidence suggests that UPR regulates the ER stress

of the cell by three different pathways: mRNA degradation

and suppression of further protein synthesis, enhancement

of protein refolding by the induction of ER chaperons and

activation of ER-associated degradation of unfolded pro-

teins. Three ER transmembrane receptors mediate UPR:

inositol-requiring enzyme 1 (IRE1), pancreatic ER kinase-

like ER kinase (PERK) and activating transcription factor 6

(ATF6). These transmembrane receptors are activated in

ER stress by dissociating from an ER chaperone GRP78

(alias BiP) that is associated with several proteins (Fig. 1).

Phosphorylated PERK blocks general mRNA translation

by phosphorylating eukaryotic initiation factor 2a (eIF2 a).

However, transcription factor ATF4 is produced despite

translation initiation block. ATF6 and IRE1 pathways

regulate the expression of ER chaperone genes and IRE1

degrades mRNA and, through spliced X-box binding pro-

tein (XBP1), induces the expression of genes for protein

degradation. At later stages C/EBP-homologous protein

(CHOP) can trigger the apoptotic response.

ER stress is thought to play an important role in the

pathogenesis of neurodegenerative diseases including PD

[25, 26]. Thus the neurotoxins, 6-hydroxydopamine (6-

OHDA) and N-methyl-4-phenyl-1, 2,3,6-tetrahydroyridine

(MPTP) produce oxidative damage with an increased

production of ROS and ER stress in cultured dopaminergic

Table 2 Examples of clinical trials using disease-modifying agents in Parkinsons disease

Conditions Aim of the study Disease group ClinicalTrials.gov

identifier

Comments

AAV2-GDNF bilateral

intraputamental infusions

Safety trial using 4

different doses of

AAV2-GDNF

Advanced PD NCT01621581 Phase I recruiting

Recombinant GDNF

(9–11 mg/ml) intermittent

bilateral intraputamen

infusions

Effect on OFF-state

motor function at

9 months

PD EUCTR2011-

003866-34-GB

Phase II ongoing

Recombinant GDNF

(9–11 mg/ml) intermittent

bilateral intraputamen

infusions

As above comparing

effects at 18 and

9 months of

treatment

PD EUCTR2013-

001881-40-GB

Phase II ongoing

Recombinant PDGF-BB into

brain ventricle using

catheter

Safety trial: infusion

into brain for

2 weeks

Moderate PD NCT00866502 Phase 1 completed: Safe and well tolerated more

studies planned

Pioglitazone daily 15 or

40 mg

Effect on progression

of PD

210 patients

with early

PD

NCT01280123 Phase 2 completed: showed no significant clinical

benefit

Exenatide daily injections

for 12 months

Effect on motor and

cognitive functions

Moderate PD

45 patients

no placebo

group

NCT01174810 Phase 2 completed: clinical improvements at

12 months with persistent effects after 12 months

of drug withdrawal studies planned using slow-

release form of drug

Immunotherapy using

monoclonal anti- a-syn

antibodies (PRX002)

Safety trial effect on

a-syn levels

Normal healthy

subject then

PD patients

NCT02095171

NCT02157714

Phase 1 completed: no adverse effects shown, a-syn

reduced in serum. Now PD patients are recruited
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neurons [27]. Recently, it was shown that UPR markers are

present in post-mortem brain of patients with Lewy body

disease including PD [28]. Furthermore, neurons derived

form induced pluripotent stem cells of PD patients showed

defects in protein handling which was linked to an acti-

vated ER stress response [29]. Development of

neuroprotective substances targeting signaling cascades

linked to ER stress could therefore be of value also in PD.

However, the situation is complex since the three ER sig-

naling cascades serve different functions in the context of

cell viability and a mild cell stress involving the UPR is

likely to be protective [30]. Studies of mice with gene

deleted of different ER stress signaling components

showed that dopaminergic neurons from XBP1 and CHOP

gene deleted mice were resistant against neurotoxins, while

those from ATF6 exhibited an enhanced susceptibility [31].

The role of ER stress and IRE1a and the PERK pathways,

regulating XBP1and CHOP, respectively, warrant further

studies in different PD models.

The link between ER stress and PD has also been sug-

gested by studying familial forms of the disease. Parkin is

an E3 ubiquitin ligase (Table 1) that in a mutant form

induces ER stress with the accumulation of protein

aggregates [32]. One target for Parkin action is the Parkin

associated endothelin-receptor like receptor (Pael-R), a

G-protein-coupled transmembrane protein which when

overexpressed accumulates and causes ER stress in

dopaminergic neurons [32, 33]. Parkin is important for the

normal turnover of dysfunctional mitochondria via selec-

tive autophagy (mitophagy) that links ER stress to

alterations in mitochondrial oxidative phosphorylation and

an increased oxidative stress [33].

Defects in vesicle transport are important mechanisms in

PD, and mutant a-syn was shown to reduce ER to Golgi

trafficking and to aggravate ER stress [34, 35]. A possible

mechanism for a-syn induced ER stress in dopaminergic

neurons was related to the accumulation of toxic a-syn

oligomers within the ER lumen and binding to chaperones

such as Grp78/Bip (see Fig. 1). Recently, a-syn was

localised to a subdomain of ER called mitochondria-asso-

ciated endoplasmic reticulum membrane (MAM) that takes

part among others in the regulation of calcium and lipid

metabolism in the cells [36, 37]. It was further shown that

the disease-causing A30P and A53T mutant a-syn is less

present in MAMs compared with the wild-type protein

suggesting an altered ER–mitochodria cross talk in PD

[37]. Along this line it has been reported that drug agonist

for the r non-opioid intracellular receptor 1 (Sigma-R1)

which is present in MAM can provide neuroprotection in

an animal model of PD [38]. Data showed that the Sigma-

R1 agonist acted partly by increasing the levels of the

neurotrophic factors, brain-derived neurotrophic factor

(BDNF) and glial cell line-derived neurotrophic factor

(GDNF), but additional mechanisms are also possible [38].

Disease-modifying effects of Sigma-R1 agonists have also

been observed in other models of neurodegenerative dis-

ease including Huntington diseases [39]. Interference with

the accumulation of a-syn in the ER and modulation pro-

tein complexes associated with MAM are attractive targets

to consider for further drug development in PD.

Fig. 1 Unfolded protein response and ER stress signaling pathways

in PD. The unfolded protein response (UPR) is a conserved pathway

for regulating protein homeostasis in the cell and it is controlled by

the chaperon GRP78/BIP protein complex in the ER (left). There are

three signaling pathways (IRE1, PERK and ATF6 for detail see text)

for UPR that become activated under conditions of cell stress,

following dysregulation of cell calcium and accumulation of

misfolded or mutant disease-causing proteins such as a-synuclein

(a-syn) in the ER (right). Initially the activated UPR signaling is

neuroprotective, but prolonged UPR causes ER stress that leads to

activation of cell death pathways. MANF as a novel neurotrophic

factor in the ER, reduces ER stress and can restore homeostasis and

counteract cell death. The precise mechanisms by which a-syn

induces ER stress and the action of MANF in cells are under

investigations
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Mitochondria as therapeutic targets in PD

Mitochondria are power plants producing cellular energy in

the form of ATP. These organelles have also important

functions in the regulation of cell metabolism, intracellular

calcium levels and the intrinsic (mitochondria-dependent)

pathway for cell death [40]. Mitochondrial dysfunctions

have been linked to the pathogenesis of PD and manifest

themselves as an increase in oxidative stress, production of

reactive oxygen species (ROS), decreases in OXPHOS

(such as complex I) proteins, mutations in mitochondrial

DNA, an altered mitochondrial dynamics [3–5]. As shown

in familial form of PD by mutations in the PARK genes,

Parkin and PINK disturbances in mitochondrial quality

control mechanisms and selective autophagy (mitophagy)

are important components of the disease [1, 2, 41]. As

recently reviewed [42], neuroprotective strategies to target

mitochondria in PD have proven to be difficult with many

compounds failing in clinical trials, however, other

attempts are currently under scrutiny.

Peroxisome proliferator-activated receptor-c (PPARc)

coactivator-1a (PGC-1a) is a master regulator of mito-

chondrial biogenesis and of genes involved in cell defense

against oxidative stress [43–45]. As shown in PGC-1a gene

deleted mice, brain neurons are more vulnerable to

oxidative stress, while overexpression of PGC-1a can be

neuroprotective in animal models of PD [45, 46]. A recent

meta-analysis of changes observed in postmortem human

PD samples identified PGC-1a as a potential target for

disease intervention [47]. However, the mere overexpres-

sion of PGC-1a may be toxic and increase the vulnerability

of dopaminergic neurons towards oxidative stress linked to

an enhanced mitochondria metabolism [7, 48, 49]. The

fine-tuned regulation of endogenous PGC-1a in neurons by

trophic substances and drugs may therefore be a better

strategy to pursue [50]. Recent studies have shown that

PGC-1a exists in different isoforms in tissues including

brain but the significance of these in PD remains open [51].

PPARc and PGC-1a signaling are altered also in other

human degenerative diseases such as type-2 diabetes

(T2D). Drugs acting on PPARc such as the thiazolidone-

diones (glitazones), rosiglitazone and pioglitazone, which

are commonly used in the treatment of T2D, may have

potentials also for the treatment of PD [52, 53]. Results of

preclinical studies showed that rosiglitazone protects

dopaminergic neurons in animal models of PD, and

pioglitazone can improve parkinsonian syndrome in rhesus

monkeys [54–56]. The beneficial effects of these drugs

were associated with a reduced neuroinflammation and

lower levels of pro-inflammatory cytokines produced by

microglia cells in the brain [55, 56]. A recent epidemio-

logical study on people with T2D revealed a lower

incidence of PD in patients on glitazone drugs [57].

However, a double blind clinical trial in early PD patients

failed to show any improvement of the disease outcome

using pioglitazone [58]. These findings are in contrast to

previous positive data in preclinical studies raising con-

cerns about how well toxin-induced animal models may

recapitulate the course of human PD (see below).

In addition to glitazones, T2D drugs acting through the

glucagon-like peptide R1 receptor (GLP-1R) system have

been shown to be neuroprotective in PD models as well as

in other brain diseases [52, 53, 59]. Most encouragingly, a

clinical trial with exenatide, a GLP-1R agonist, given for

12 months to PD patients, showed that the drug favourably

influenced motor and cognitive functions of patients with

moderate disease [60]. The positive effects of the drug

were sustained in the patients even after a period of

12 months not receiving the drug suggesting a disease-

modifying action of exenatide in PD [61]. A confounding

factor in the study was the lack of proper placebo controls,

and additional clinical trails are required to corroborate the

results [61].

Exenatide and other GLP-1R agonist are well tolerated

in humans as shown in treatment of T2D [52, 53]. Future

trials in PD (Table 2) may benefit from the development of

long-acting GLP-1R agonists and other novel pharmaco-

logical compounds targeting the GLP-1R signaling system

in T2D. It is also important to study the mechanisms of

action of GLP-1R agonist in PD and in neuronal cells as

these may partly differ from those in non-neuronal cells. It

is possible that in the future a multi-therapy using GLP-1R

agonist drugs and trophic factors can provide additional

benefits in the treatment of PD.

Neuroinflammation and oxidative stress in PD

Neuroinflammation with the activation of glial cells has for

long time been linked to the disease pathology in PD [62–

64]. Microglia secrete a number of molecules and the pro-

inflammatory cytokines, interleukin-1b, interferon-c and

tumor necrosis factor alpha (TNFa) as well as nitric oxide

(NO) which all can aggravate the disease. Targeting

microglia activation and the pro-inflammatory cytokines

using drugs or neuroprotective substances is therefore a

valid path to consider for therapy. The neuropeptide

PACAP displays an immunomodulatory effect in the brain,

and some neurotrophic factors may also target microglial

cells (Fig. 2). However, the situation is complex and during

early stages of brain diseases microglia may actually pro-

vide neuroprotection by producing factors such as

interleukin-4 (IL-4) and IL-10. It has been suggested that

microglia cells are of two types, M1 and M2 cells that play
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opposite roles in neuroinflammation depending on the state

of activation and the molecules secreted [65]. Previous

studies in cell culture and in toxin models of PD provided

evidence that IL-10 is protective in dopaminergic neurons,

but so far no clinical investigations have been performed

[66]. Studies of the interplay between different cytokines

and the neuron–glia interactions in the course of PD war-

rant further studies. The role and plasticity of microglial

cells in neuroinflammation have been recently reviewed

[67].

Oxidative stress is a major culprit in PD and linked to

mitochondrial production of ROS and insufficient antioxi-

dant levels in dopaminergic neurons. Studies using

antioxidants such as use of the vitamin E has not shown

promising results in PD. Recent findings indicate that

neuron–astrocyte cross talk plays an important role in the

protection of dopaminergic neurons by induction of an

antioxidant response in astrocytes via activation of the

Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway

[68]. Nrf2 is a transcription factor involved in oxidative

stress and it increased the expression of various antioxi-

dants in the cell. Epidemiologic studies had shown that the

risk of developing PD was lower and the disease progresses

slower in people with higher levels of urate in the blood

[69]. Increasing urate levels would therefore possibly offer

a novel treatment strategy in PD [70]. As a proof-of-prin-

ciple, a study supplementing PD patients with inosine that

can be converted into urate during metabolism was found

to increase urate levels significantly without any adverse

effects [71]. Interestingly, the higher urate levels slowed

Fig. 2 Neurotrophic approaches and cellular pathways in PD.

Pathophysiological events leading to PD are complex and involve

several cellular pathways associated with the disease progression as

depicted here. L-dopa is used for treatment of PD to restore levels of

dopamine in the brain but leads to severe dyskinesia by time. PD is

characterized by the presence of cytoplasmic inclusions called Lewy

body and Lewy neurites (shown as red circles) that contain ubiquitin

and misfolded a-synuclein (a-syn) (black rectangles). Currents drugs

and disease-modifying substances launched for neuroprotection in PD

may act through one or several cellular pathways. Depicted here are

the drugs that target dopaminergic neuron firing and calcium influx

(isradipine), mitochondria (shown in green) and cell metabolism

(glitatzone, GLP-1R agonists), ER stress and inflammatory responses

(different drugs, neuropeptides). The neuropeptide Pacap influences

cell signaling pathways to increase survival and counteract cell

degeneration in neurons. The novel neurotrophic factor, CDNF is both

neuroprotective and neurorestorative in animal models of PD. PDGF-

BB is able to stimulate neurogenesis and favourably influence

dopaminergic neurons, and is well tolerated in PD patients (see text).

The GLP-1R agonists used in treatment of type-2 diabetes have

potentials as disease-modifying drugs in PD but better controlled

clinical trials are required to confirm data. Elevation of urate

concentrations in brain can be neuroprotective via activation of

antioxidant pathways through astrocytes (see text). a-syn a-synuclein,

CDNF cerebral dopamine neurotrophic factor, ER endoplasmic

reticulum, GDNF glial cell line-derived neurotrophic factor, GLI

glitazone, GLP-1R glucagon-like peptide R1 receptor, ISA isradipine,

PACAP pituitary adenylate cyclase-activating polypeptide, PD

Parkinson’s disease, PDGF-BB platelet-derived growth factor BB

isoform
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clinical progression in PD more clearly in women PD

patients than in men [72]. A similar sex difference

regarding urate levels and clinical outcome was observed

in stroke patients [73], and this needs to be taken into

account in further trials using uric acid therapies. Currently

a phase 3 clinical trial using inosine to elevate urate in PD

is planned to answer pertinent questionswhether the treat-

ment can afford neuroprotection and slow disease

progression in PD.

Neurotrophic factors in Parkinson’s disease

GDNF family ligands

GDNF was discovered by its ability to promote the survival

and morphological differentiation of dopaminergic neurons

and to increase their high-affinity dopamine uptake [74].

GDNF and related growth factor, neurturin (NRTN), arte-

min and persephin are homodimeric proteins that form a

distant group of neurotrophic factors in the transforming

growth factor b (TGF-b) superfamily [75]. GDNF acts by

binding specifically to the GPI-anchored GDNF family

receptor alpha 1 (GFRa1) and then this complex interacts

with and activates the receptor tyrosine kinase RET. NRTN

primarily binds to its co-receptor GFRa2, but can activate

RET also via GFRa1 [75, 76]. GDNF and NRTN have also

alternative receptors NCAM and syndecan-3, but their role

for dopamine neurons remains unclear [75, 76].

Studies on gene-deleted animals revealed that GDNF,

GFRa1 as well as RET knockout mice die after birth due to

the lack of kidney, but have an intact nigrastriatal

dopaminergic system, suggesting that GDNF is not crucial

for the development of the dopaminergic neurons [75].

Conditional deletions of GDNF, however, have produced

conflicting results. Thus one study reported a loss of

dopamine neurons [77], whereas the more recent study

using three different GDNF deletion approaches found no

loss of dopamine neurons in adult midbrain [78]. RET

conditional deletion revealed a small loss of midbrain

dopamine neurons in aging mice demonstrating that the

RET signaling is important for the adult maintenance of

these neurons [79].

Preclinical studies have shown that GDNF and NRTN

can promote the survival of dopamine neurons in culture as

well as protect dopamine neurons in rodent and non-human

primate neurotoxin models of PD [76, 80, 81]. Since

GDNF is the mostly used neurotrophic factor in animal

models of PD, it is often considered as the golden standard

for testing other proteins. Experiments using NRTN are

fewer, but NRTN was shown to be effective in most of the

PD animal models studied [76, 80, 81]. The main differ-

ence between GDNF and NRTN is that they use a different

GFRa receptor and that GDNF diffuses better than NRTN

in the brain. However, it is clear that GDNF does not

exhibit a robust protective effect in all models of PD. Thus,

in the severe 6-OHDA model of PD GDNF showed only

modest effects, and GDNF also failed to rescue dopamine

neurons after overexpression of a-syn [76, 81]. This latter

may be due to the fact that increased levels of a-syn can

downregulate the transcription factor Nurr1 leading to a

reduced expression of RET [81] that is required for GDNF

signaling (see above).

GDNF has been tested in two phase 2 trials on PD

patients [76, 82]. In the first trial, GDNF protein was

delivered intracerebroventricularly and the treatment had

no beneficial effects for the patients [76, 83]. However,

GDNF was effective when it was delivered to the caudate

putamen in the phase 1 study [84], and thereafter a second

phase 2 trial with GDNF protein was conducted. In this

trial GDNF was continuously infused to the caudate puta-

men, but again no clinical benefit was observed as

compared to placebo-treated patients [85]. Although, these

pioneering studies were less encouraging they gave valu-

able information and highlighted the importance of basic

research to understand the mechanisms for GDNF action in

aging brain. Currently, two phases 2 trials with GDNF are

ongoing, which partly use a new technology for GDNF

protein delivery. Likewise, a GDNF gene therapy phase 1

trial is on its way and during the coming year we should

hear exciting news about the results of these trials

(Table 2).

Gene therapy has also been used to deliver NTRN to

brains of PD patients in two phase 2 trials. Thus, in a

clinical trial with 58 PD patients receiving adeno-associ-

ated virus serotype 2 expressing NRTN the clinical benefit

was statistically significant but modest, and only after

1 year of treatment [82, 86]. Autopsy data demonstrated

that at least one reason for the modest efficacy could be the

poor diffusion of NRTN in brain tissue. In a second study,

the NRTN-expressing virus was then injected both into the

caudate putamen and substantia nigra. Although, this trial

did not show a statistically significant benefit overall, it

demonstrated efficacy in a small group of patients with

early stage PD [82]. This is encouraging and future studies

using NRTN and GDNF will benefit from better protein

and gene delivery techniques, use of regulated gene therapy

vectors, as well as improving the clinical design, and the

selection of patient groups for treatment.

CDNF and MANF are novel endoplasmic reticulum

located neurotrophic factors for PD

The moderate effects obtained with GDNF and NRTN in

clinical trials have stimulated the search for new growth

factors for PD. In 2003, a protein called mesencephalic
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astrocyte-derived neurotrophic factor (MANF) was char-

acterized and demonstrated to promote the survival of

embryonic dopamine neurons in culture [87]. Subse-

quently, a homologous protein called cerebral dopamine

neurotrophic factor (CDNF) was discovered and found to

be protective for dopamine neurons [88]. CDNF and

MANF proteins differ from other neurotrophic factors in

amino acid sequence and in 3-dimensional structure, and

the proteins are mostly located in the ER [87–89].

Although, the receptors and intracellular signaling path-

ways triggered by CDNF and MANF are still unknown, it

is clear that these factors have a dual mode of action [88,

89]. They can function in the ER interacting with GRP78

and regulating ER stress (Fig. 1), as shown in MANF

knockout mice that have chronically active UPR pathways

[90]. CDNF was also able to protect dopaminergic neurons

against the injury caused by a-syn oligomers [91] which

induces ER stress (Fig. 1).

In addition to their functions in the ER, CDNF and

MANF also act as classical neurotrophic factors on cells by

stimulating still unknown plasma membrane receptors and

intracellular signaling pathways to protect neurons. Thus, it

was shown that CDNF is able to efficiently protect and

repair dopamine neurons in rodent 6-OHDA and MPTP

models of PD [88, 92], while MANF has so far been tested

only in rats using 6-OHDA with beneficial effects [92].

CDNF and MANF diffuse significantly better than GDNF

in brain tissue and in the severe rat 6-OHDA model of PD,

and CDNF was more efficient than GDNF [93]. Moreover,

recent experiments in rhesus monkey using MPTP as a

toxin for dopaminergic neurons demonstrated that CDNF is

effective in protecting and repairing these neurons by

preventing their degeneration and death (unpublished data).

CDNF was also shown to improve motor behavior of

rhesus monkeys and currently clinical trials with CDNF in

PD patients have been planned in 2016.

Taken together CDNF and MANF are new growth

factors that are ER-resident protein that may be secreted

under certain conditions such as after injury. These factors

can protect injured neurons extracellularly by interacting

with plasma membrane receptors and by acting inside the

cells also modulate UPR and ER stress that contributes to

the maintenance and functioning of dopamine neurons.

Other growth factors with neuroprotective

potentials in PD

In addition to GDNF and CDNF-MANF family proteins,

many growth factors can protect dopamine neurons in

animal models of PD when injected into the brain before

the neurotoxin lesion. However, in a clinically more rele-

vant neurorestorative model, when animals are first

lesioned with the neurotoxin and only then treated with

growth factor, very few factors show neurorestorative

activity. Among the proteins that have shown some pro-

tective effects after the toxin-induced lesion, one should

mention, VEGF-A, VEGF-B, PDGF-BB and some mem-

bers of the FGF family (see below). VEGF-A enhances the

survival of embryonic midbrain dopaminergic neurons

in vitro, and is both neuroprotective and neurorestorative in

the 6-OHDA rat model of PD [94]. In addition, VEGF-B

can stimulate neurogenesis, promote the survival of cul-

tured dopaminergic neurons and protect against 6-OHDA

injuries in the rat [94]. Also VEGF-C acts directly on

dopamine neurons promoting the survival in vitro and

in vivo. However, the in vivo effects of VEGF-C in

6-OHDA animal models of PD were rather modest [94].

Future therapies may include simultaneous use of sev-

eral growth factors. One very exciting example is the

collaboration of GDNF with TGF-b. Thus, it has been

shown that the neurotrophic effect of GDNF in vitro and

in vivo requires the presence of TGF-b [95]. TGF-b
induced recruitment of the GDNF receptor, GFRa1 to the

plasma membrane, thereby permitting GDNF signaling and

neurotrophic effects. The combined effect of GDNF-TGF-

b is robust in rodent models of PD but the efficacy of this

has not yet been examined in non-human primates [95].

PDGF

Platelet-derived growth factor (PDGF) has multitude of

functions in different organs including stimulation of cell

proliferation [96]. Biologically active PDGF is a dimer that

binds to specific tyrosine kinase PDGF receptors on target

cells [96]. Different isoforms of PDGF exist in tissues, and

the PDGF-BB isoform was shown to be protective in cul-

tured dopaminergic neurons [97]. PDGF-BB was also

increased in brain after treatment with 6-OHDA suggesting

a compensatory response [98]. Along this line, PDGF-BB

injections induced functional recovery and provided neu-

roprotection of the lesioned nigrastriatal system [99]. Data

showed that PDGF-BB might act not directly on

dopaminergic neurons, but on neural progenitor and stem

cells in the subventricular zone to enhance neurogenesis

[99]. Together these results raised the possibility that

stimulation of neurogenesis in the brain can enhance

recovery and possibly halt the process of cell degeneration

in PD. A pilot study with 12 PD patients further showed

that administration of PDGF-BB into the brain ventricles

for 2 weeks was well tolerated with no obvious side effects

[100]. The design of this first trial (the short treatment

period, few patients enrolled) was not designed to evaluate

the clinical efficacy of PDGF-BB. However, an increase in

dopamine transporter (DAT) binding was noted in the

putamen of PDGF-BB-treated patient group [100]. Further,
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clinical trials with PD patients are planned (Table 2) to

study relevant questions concerning the efficacy, responses

and neuroprotective potentials of PDGF-BB in PD [101].

Given PDGF-BB‘s unique action to stimulate neurogenesis

it may be possible to consider a co-treatment with PDGF-

BB and other trophic factors or drugs to restore the

nigrostriatal system and provide neuroprotection in PD

(Fig. 2).

Fibroblast growth factor (FGF) family

Members of the fibroblast growth factor (FGF) family are

secreted proteins that signal via activation of their cognate

receptors, consisting of four transmembrane FGF-receptor

tyrosine kinases (FGFR1-4). The FGFs have diverse

functions ranging from tissue development to metabolism,

and some members are also known to display trophic

actions on dopaminergic neurons. Thus, FGF20 showed

neuroprotection in vitro [102, 103], and attenuated

dopaminergic neuron loss and improve behavior in the rat

6-OHDA toxin model of PD [104].

FGF20 can also generate a large number of dopamin-

ergic neurons from different sources of stem cells,

including human embryonic stem cells, making it an useful

factor for cell-based therapies in PD [105]. There are also

reports showing polymorphisms in the regulatory region of

the FGF20 gene in PD [106]. However, other studies have

reported that FGF20 is probably not a risk factor for PD

[107].

In addition to FGF20, several studies have shown that

FGF2 can exert protective effects on cultured as well as on

midbrain dopaminergic neurons in vivo, and these results

have been reviewed [108]. Data thus support a therapeutic

potential of FGF20 and FGF2 in PD, but pre-clinical trials

have been hampered by the rapid plasma clearance,

molecular instability and poor permeability of these factors

through the blood–brain barrier.

FGF21

Fibroblast growth factor 21 (FGF21) is an endocrine

growth factor that influences glucose and lipid metabo-

lism in the body [109, 110]. FGF21 acts on targets cells

by activating the FGF receptor tyrosine kinase in con-

junction with the cofactor b-klotho [111]. Elevated serum

levels of FGF21 are linked to mitochondrial diseases in

humans [112]. The biology of FGF21 is complex and the

factor can have both systemic and local effects in tissues

[109]. FGF21 can pass the blood–brain barrier [113] and

may display a good penetration in brain tissue as its

lacks the heparin-binding domain present in classical

FGFs [109]. FGF21 is able to extend life span in mice

[114], suggesting that it may have beneficial effects on

the aging process associated with cell degeneration.

Recently, it was shown that FGF21 stimulates mito-

chondrial functions and PGC-1a signaling in human

dopaminergic neurons [115]. The potential role of FGF21

in regulation of the viability of aging dopaminergic

neurons and in models of PD warrants further

investigations.

Pituitary adenylate cyclase-activating polypeptide
(PACAP)

PACAP is a member of the secretin/glucagon superfamily

[116], and shown to have multiple effects in different tis-

sues, including brain [117–119]. PACAP acts via

G-protein-coupled receptors, named PAC1R (specific for

PACAP) and the VPAC1 and VPAC2 receptors (shared

with the peptide VIP [120]. PACR1 is widely expressed by

neurons in the brain including the dopaminergic neurons.

PACAP activates both the cAMP/protein kinase A and the

phospholipase C/protein kinase C (PKC) pathways

depending on the expression of different PAC1R isoforms

[118–120]. The mechanism by which PACAP enhances

neuroprotection is complex but related to an increase in

specific genes and pathways regulated by cAMP and/or

calcium in the neurons [121, 122]. It has also been shown

that there is cross talk between PACAP and neurotrophic

factor signaling in neurons [123] and this may add to cell

protection.

Accumulating evidences support the view that PACAP

is neuroprotective on dopaminergic neurons as shown in

cell culture experiments [124, 125] and in vivo PD models

using the neurotoxins, 6-OHDA and MPTP [126].

Dopaminergic neurons in PACAP-deficient mice are also

more susceptible to the toxin paraquat and show changes in

microglia and immune responses [127].

PACAP has also a strong anti-inflammatory action, and

the peptide can counteract the effects of pro-inflammatory

cytokines produced by microglia cells [128, 129]. PACAP

is able to cross the blood–brain barrier [130, 131], but the

peptide has a short half-life in tissues due to proteolysis. As

to possible treatments PACR1 agonists like maxadilan or

fragments or derivate of PACAP may therefore be more

useful [119, 122]. In view of the many targets, adminis-

tration of PACAP may produce side effects that may

preclude a long-term treatment with the peptide. For future

therapies involving PACAP, it is therefore necessary to

carefully consider issues of safety, doses, pharmacological

profile, kinetics and the mode of administration of the

peptide.
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Clinical trials in PD

Figure 2 shows a brief summary of recent disease-modi-

fying agents and their known or inferred mechanism of

action in PD. Several molecules and trophic factors

showing promising neuroprotective actions in preclinical

experiments have failed to do so in rigorous clinical trials.

These outcomes have been the subject of a recent review

[28]. It is foreseen that an increased understanding of

mechanisms underlying PD together with the development

of better animal models reflecting the complexity of human

PD can help to reveal novel targets for intervention.

Regarding trophic factors, treatments with GDNF or

NRTN have produced mixed results raising questions about

doses, methods of delivery and tissue penetration of the

factors. The possible beneficial role of GDNF in PD is

being further explored (Table 2). The novel dopaminergic

factor CDNF showed positive results in preclinical models

of PD, and CDNF is currently studied in rhesus monkey PD

model and entering clinical trials. The first experiments

with PDGF-BB infused to human brains showed a good

tolerability in PD patients encouraging further clinical tri-

als using this growth factor (Table 2). GLP-1 agonists

primarily used for the treatment of T2D have also shown

beneficial effects in preclinical models of PD. Recently, an

open-label clinical study using exenatide revealed a sus-

tained positive effect in PD patients with improvement of

clinical scoring suggesting a disease-modifying effect of

the drug (Table 2). Currently, further studies are underway

to confirm these results using exenatide and also other

GLP-1 agonists in PD. At the same time, more preclinical

work is required to better understand the mechanisms of

action of these compounds in providing neuroprotection

and promote functional recovery in PD patients. In addition

to drugs and growth factors immunotherapies targeting a-

syn may show potential benefits in the disease, but this has

to await the first clinical trial with PD patients (Table 2).

Conclusions and future prospective

PD has a complex etiology with contributions of genetic

and environmental risk factors. Patients afflicted by the

disease show both motor and non-motor symptoms and the

current treatments with dopamine replacement using

L-dopa and other dopamine agonists target mainly the

former. No drugs or therapies are currently available to

efficiently target the neurodegenerative process or slow

disease progression in PD. Recent studies on the patho-

physiology and genetic causes of PD have raised hopes that

it may be possible in the future to design and tailor-made

disease-modifying therapies and neuroprotective agents in

PD. However to accomplish this more preclinical work into

the mechanisms of neuroprotection is required combined

with controlled and well-designed clinical trials of

promising drugs and disease-modifying substances in PD

patients. Studies on-going to identify novel biomarkers for

PD are also important (see www.clinicaltrials.gov) and will

be helpful for early diagnosis and for treatment, and for

follow-up of outcomes of clinical trials in PD. For effective

therapies, the stratification of PD patient according to eti-

ology (familial and sporadic forms) is also crucial as these

may vary between patient groups. Depending on the

severity and state of the disease, PD patients may require a

different treatment approach for example with regard to

targeting neuroinflammation that depending on the func-

tional state of microglia may be a friend or a foe in the

disease. It is also possible that not one single but a com-

bined therapy is required to effectively combat cell

degeneration and restore neuronal functions in PD. The

current research on neuroprotective agents and disease-

modifying drugs in PD has generated promising data that

bears potentials for a better treatment of patients afflicted

by this dreadful disease.
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