355 research outputs found

    Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments

    Full text link
    This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2019, 58, 12820 12838, which has been published in final form at https://doi.org/10.1002/anie.201810121. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] N-Alkylamines are key intermediates in the synthesis of fine chemicals, dyes, and natural products, and hence are highly valuable building blocks in organic chemistry. Consequently, the development of greener and more efficient procedures for their production continues to attract the interest of both academic and industrial chemists. Reductive procedures such as reductive amination or N-alkylation through hydrogen autotransfer by employing carbonyl compounds or alcohols as alkylating agents have prevailed for the synthesis of amines. In the last few years, carboxylic/carbonic acid derivatives and CO2 have been introduced as alternative and convenient alkylating sources. The safety, easy accessibility, and high stability of these reagents makes the development of new reductive transformations with them as N-alkylating agents a useful alternative to existing procedures. In this Review, we summarize reported examples of one-pot reductive N-alkylation methods that use carboxylic/carbonic acid derivatives or CO2 as alkylating agents.This work was supported by the state of MecklenburgVorpommern and the BMBF. J.R.C.-A. thanks the Ministerio de Ciencia, Innovacion y Universidades for a Juan de la Cierva contract. R.A. thanks UPV for a postdoctoral contract.Cabrero Antonino, JR.; Adam-Ortiz, R.; Beller, M. (2019). Catalytic Reductive N-Alkylations Using CO2 and Carboxylic Acid Derivatives: Recent Progress and Developments. Angewandte Chemie International Edition. 58(37):12820-12838. https://doi.org/10.1002/anie.201810121S12820128385837Adams, J. M., & Cory, S. (1975). Modified nucleosides and bizarre 5â€Č-termini in mouse myeloma mRNA. Nature, 255(5503), 28-33. doi:10.1038/255028a0Kleemann, A., Engel, J., Kutscher, B., & Reichert, D. (Eds.). (2009). Pharmaceutical Substances. doi:10.1055/b-003-108611Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., 
 Rechavi, G. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485(7397), 201-206. doi:10.1038/nature11112Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylation of Peptides and Proteins: An Important Element for Modulating Biological Functions. Angewandte Chemie International Edition, 52(1), 254-269. doi:10.1002/anie.201205674Chatterjee, J., Rechenmacher, F., & Kessler, H. (2012). N-Methylierung von Peptiden und Proteinen: ein wichtiges Element fĂŒr die Regulation biologischer Funktionen. Angewandte Chemie, 125(1), 268-283. doi:10.1002/ange.201205674Froidevaux, V., Negrell, C., Caillol, S., Pascault, J.-P., & Boutevin, B. (2016). Biobased Amines: From Synthesis to Polymers; Present and Future. Chemical Reviews, 116(22), 14181-14224. doi:10.1021/acs.chemrev.6b00486Salvatore, R. N., Yoon, C. H., & Jung, K. W. (2001). Synthesis of secondary amines. Tetrahedron, 57(37), 7785-7811. doi:10.1016/s0040-4020(01)00722-0Lamoureux, G., & AgĂŒero, C. (2009). A comparison of several modern alkylating agents. Arkivoc, 2009(1), 251-264. doi:10.3998/ark.5550190.0010.108Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie International Edition, 54(48), 14503-14507. doi:10.1002/anie.201507219Luo, H., Wu, G., Zhang, Y., & Wang, J. (2015). Silver(I)-CatalyzedN-Trifluoroethylation of Anilines andO-Trifluoroethylation of Amides with 2,2,2-Trifluorodiazoethane. Angewandte Chemie, 127(48), 14711-14715. doi:10.1002/ange.201507219Selva, M., Trotta, F., & Tundo, P. (1992). Esters and orthoesters as alkylating agents at high temperature. Applications to continuous-flow processes. Journal of the Chemical Society, Perkin Transactions 2, (4), 519. doi:10.1039/p29920000519Padmanabhan, S., Reddy, N. L., & Durant, G. J. (1997). A Convenient One Pot Procedure for N-Methylation of Aromatic Amines Using Trimethyl Orthoformate. Synthetic Communications, 27(4), 691-699. doi:10.1080/00397919708003343Rivetti, F., Romano, U., & Delledonne, D. (1996). Dimethylcarbonate and Its Production Technology. Green Chemistry, 70-80. doi:10.1021/bk-1996-0626.ch006Ono, Y. (1997). Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General, 155(2), 133-166. doi:10.1016/s0926-860x(96)00402-4Pacheco, M. A., & Marshall, C. L. (1997). Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive. Energy & Fuels, 11(1), 2-29. doi:10.1021/ef9600974Delledonne, D., Rivetti, F., & Romano, U. (2001). Developments in the production and application of dimethylcarbonate. Applied Catalysis A: General, 221(1-2), 241-251. doi:10.1016/s0926-860x(01)00796-7Tundo, P., & Selva, M. (2002). The Chemistry of Dimethyl Carbonate. Accounts of Chemical Research, 35(9), 706-716. doi:10.1021/ar010076fSelva, M., Tundo, P., & Perosa, A. (2003). Reaction of Functionalized Anilines with Dimethyl Carbonate over NaY Faujasite. 3. Chemoselectivity toward Mono-N-methylation. The Journal of Organic Chemistry, 68(19), 7374-7378. doi:10.1021/jo034548aTundo, P., Rossi, L., & Loris, A. (2005). Dimethyl Carbonate as an Ambident Electrophile. The Journal of Organic Chemistry, 70(6), 2219-2224. doi:10.1021/jo048532bSelva, M., Perosa, A., Tundo, P., & Brunelli, D. (2006). SelectiveN,N-Dimethylation of Primary Aromatic Amines with Methyl Alkyl Carbonates in the Presence of Phosphonium Salts. The Journal of Organic Chemistry, 71(15), 5770-5773. doi:10.1021/jo060674dSelva, M. (2007). Green approaches to highly selective processes: Reactions of dimethyl carbonate over both zeolites and base catalysts. Pure and Applied Chemistry, 79(11), 1855-1867. doi:10.1351/pac200779111855Selva, M., & Perosa, A. (2008). Green chemistry metrics: a comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chemistry, 10(4), 457. doi:10.1039/b713985cDhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042Kawai, K., Li, Y.-S., Song, M.-F., & Kasai, H. (2010). DNA methylation by dimethyl sulfoxide and methionine sulfoxide triggered by hydroxyl radical and implications for epigenetic modifications. Bioorganic & Medicinal Chemistry Letters, 20(1), 260-265. doi:10.1016/j.bmcl.2009.10.124Jiang, X., Wang, C., Wei, Y., Xue, D., Liu, Z., & Xiao, J. (2013). A General Method for N-Methylation of Amines and Nitro Compounds with Dimethylsulfoxide. Chemistry - A European Journal, 20(1), 58-63. doi:10.1002/chem.201303802Atkinson, B. N., & Williams, J. M. J. (2014). Dimethylsulfoxide as an N-Methylation Reagent for Amines and Aromatic Nitro Compounds. ChemCatChem, 6(7), 1860-1862. doi:10.1002/cctc.201400015Eschweiler, W. (1905). Ersatz von an Stickstoff gebundenen Wasserstoffatomen durch die Methylgruppe mit HĂŒlfe von Formaldehyd. Berichte der deutschen chemischen Gesellschaft, 38(1), 880-882. doi:10.1002/cber.190503801154Clarke, H. T., Gillespie, H. B., & Weisshaus, S. Z. (1933). The Action of Formaldehyde on Amines and Amino Acids1. Journal of the American Chemical Society, 55(11), 4571-4587. doi:10.1021/ja01338a041Kim, S., Oh, C. H., Ko, J. S., Ahn, K. H., & Kim, Y. J. (1985). Zinc-modified cyanoborohydride as a selective reducing agent. The Journal of Organic Chemistry, 50(11), 1927-1932. doi:10.1021/jo00211a028Fache, F., Jacquot, L., & Lemaire, M. (1994). Extension of the eschweiler-clarke procedure to the N-alkylation of amides. Tetrahedron Letters, 35(20), 3313-3314. doi:10.1016/s0040-4039(00)76894-8Gomez, S., Peters, J. A., & Maschmeyer, T. (2002). The Reductive Amination of Aldehydes and Ketones and the Hydrogenation of Nitriles: Mechanistic Aspects and Selectivity Control. Advanced Synthesis & Catalysis, 344(10), 1037-1057. doi:10.1002/1615-4169(200212)344:103.0.co;2-3Steinhuebel, D., Sun, Y., Matsumura, K., Sayo, N., & Saito, T. (2009). Direct Asymmetric Reductive Amination. Journal of the American Chemical Society, 131(32), 11316-11317. doi:10.1021/ja905143mWakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie International Edition, 49(27), 4612-4614. doi:10.1002/anie.201001715Wakchaure, V. N., Zhou, J., Hoffmann, S., & List, B. (2010). Catalytic Asymmetric Reductive Amination of α-Branched Ketones. Angewandte Chemie, 122(27), 4716-4718. doi:10.1002/ange.201001715Chusov, D., & List, B. (2014). Reductive Amination without an External Hydrogen Source. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201400059Chusov, D., & List, B. (2014). Reduktive Aminierung ohne externe Wasserstoffquelle. Angewandte Chemie, 126(20), 5299-5302. doi:10.1002/ange.201400059Raoufmoghaddam, S. (2014). Recent advances in catalytic C–N bond formation: a comparison of cascade hydroaminomethylation and reductive amination reactions with the corresponding hydroamidomethylation and reductive amidation reactions. Organic & Biomolecular Chemistry, 12(37), 7179. doi:10.1039/c4ob00620hJagadeesh, R. V., Murugesan, K., Alshammari, A. S., Neumann, H., Pohl, M.-M., Radnik, J., & Beller, M. (2017). MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science, 358(6361), 326-332. doi:10.1126/science.aan6245Hamada, H., Yamamoto, M., Kuwahara, Y., Matsuzaki, T., & Wakabayashi, K. (1985). The Co-amination of Phenol and Cyclohexanol with Palladium-on-carbon Catalyst in the Liquid Phase. An Application of a Hydrogen-transfer Reaction. Bulletin of the Chemical Society of Japan, 58(5), 1551-1555. doi:10.1246/bcsj.58.1551Chen, Z., Zeng, H., Gong, H., Wang, H., & Li, C.-J. (2015). Palladium-catalyzed reductive coupling of phenols with anilines and amines: efficient conversion of phenolic lignin model monomers and analogues to cyclohexylamines. Chemical Science, 6(7), 4174-4178. doi:10.1039/c5sc00941cCui, X., Junge, K., & Beller, M. (2016). Palladium-Catalyzed Synthesis of Alkylated Amines from Aryl Ethers or Phenols. ACS Catalysis, 6(11), 7834-7838. doi:10.1021/acscatal.6b01687Yan, L., Liu, X.-X., & Fu, Y. (2016). N-Alkylation of amines with phenols over highly active heterogeneous palladium hydride catalysts. RSC Advances, 6(111), 109702-109705. doi:10.1039/c6ra22383dZimmermann, B., Herwig, J., & Beller, M. (1999). The First Efficient Hydroaminomethylation with Ammonia: With Dual Metal Catalysts and Two-Phase Catalysis to Primary Amines. Angewandte Chemie International Edition, 38(16), 2372-2375. doi:10.1002/(sici)1521-3773(19990816)38:163.0.co;2-hZimmermann, B., Herwig, J., & Beller, M. (1999). Erste effiziente Hydroaminomethylierung mit Ammoniak: mit dualen Metallkatalysatoren und Zweiphasenkatalyse zu primĂ€ren Aminen. Angewandte Chemie, 111(16), 2515-2518. doi:10.1002/(sici)1521-3757(19990816)111:163.0.co;2-aHartwig, J. F. (2002). CHEMICAL SYNTHESIS: Raising the Bar for the. Science, 297(5587), 1653-1654. doi:10.1126/science.1076371Ahmed, M., Seayad, A. M., Jackstell, R., & Beller, M. (2003). Amines Made Easily:  A Highly Selective Hydroaminomethylation of Olefins. Journal of the American Chemical Society, 125(34), 10311-10318. doi:10.1021/ja030143wAhmed, M., Buch, C., Routaboul, L., Jackstell, R., Klein, H., Spannenberg, A., & Beller, M. (2007). Hydroaminomethylation with Novel Rhodium–Carbene complexes: An Efficient Catalytic Approach to Pharmaceuticals. Chemistry - A European Journal, 13(5), 1594-1601. doi:10.1002/chem.200601155Crozet, D., UrrutigoĂŻty, M., & Kalck, P. (2011). Recent Advances in Amine Synthesis by Catalytic Hydroaminomethylation of Alkenes. ChemCatChem, 3(7), 1102-1118. doi:10.1002/cctc.201000411GĂŒlak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie International Edition, 53(28), 7320-7323. doi:10.1002/anie.201402368GĂŒlak, S., Wu, L., Liu, Q., Franke, R., Jackstell, R., & Beller, M. (2014). Phosphine‐ and Hydrogen‐Free: Highly Regioselective Ruthenium‐Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie, 126(28), 7448-7451. doi:10.1002/ange.201402368Chen, C., Dong, X.-Q., & Zhang, X. (2016). Recent progress in rhodium-catalyzed hydroaminomethylation. Organic Chemistry Frontiers, 3(10), 1359-1370. doi:10.1039/c6qo00233aFleischer, I., Gehrtz, P., Hirschbeck, V., & Ciszek, B. (2016). Carbonylations of Alkenes in the Total Synthesis of Natural Compounds. Synthesis, 48(11), 1573-1596. doi:10.1055/s-0035-1560431Kobayashi, S., & Ishitani, H. (1999). Catalytic Enantioselective Addition to Imines. Chemical Reviews, 99(5), 1069-1094. doi:10.1021/cr980414zLipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie International Edition, 43(17), 2228-2230. doi:10.1002/anie.200353294Lipshutz, B. H., & Shimizu, H. (2004). Copper(I)-Catalyzed Asymmetric Hydrosilylations of Imines at Ambient Temperatures. Angewandte Chemie, 116(17), 2278-2280. doi:10.1002/ange.200353294Nolin, K. A., Ahn, R. W., & Toste, F. D. (2005). Enantioselective Reduction of Imines Catalyzed by a Rhenium(V)−Oxo Complex. Journal of the American Chemical Society, 127(36), 12462-12463. doi:10.1021/ja050831aMršić, N., Minnaard, A. J., Feringa, B. L., & Vries, J. G. de. (2009). Iridium/Monodentate Phosphoramidite Catalyzed Asymmetric Hydrogenation ofN-Aryl Imines. Journal of the American Chemical Society, 131(24), 8358-8359. doi:10.1021/ja901961yNugent, T. C., & El-Shazly, M. (2010). Chiral Amine Synthesis - Recent Developments and Trends for Enamide Reduction, Reductive Amination, and Imine Reduction. Advanced Synthesis & Catalysis, 352(5), 753-819. doi:10.1002/adsc.200900719Xie, J.-H., Zhu, S.-F., & Zhou, Q.-L. (2011). Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines. Chemical Reviews, 111(3), 1713-1760. doi:10.1021/cr100218mZhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral BrĂžnsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie International Edition, 50(22), 5120-5124. doi:10.1002/anie.201100878Zhou, S., Fleischer, S., Junge, K., & Beller, M. (2011). Cooperative Transition-Metal and Chiral BrĂžnsted Acid Catalysis: Enantioselective Hydrogenation of Imines To Form Amines. Angewandte Chemie, 123(22), 5226-5230. doi:10.1002/ange.201100878Bartoszewicz, A., Ahlsten, N., & MartĂ­n-Matute, B. (2013). Enantioselective Synthesis of Alcohols and Amines by Iridium-Catalyzed Hydrogenation, Transfer Hydrogenation, and Related Processes. Chemistry - A European Journal, 19(23), 7274-7302. doi:10.1002/chem.201202836Etayo, P., & Vidal-Ferran, A. (2013). Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem. Soc. Rev., 42(2), 728-754. doi:10.1039/c2cs35410aLagaditis, P. O., Sues, P. E., Sonnenberg, J. F., Wan, K. Y., Lough, A. J., & Morris, R. H. (2014). Iron(II) Complexes Containing Unsymmetrical P–N–Pâ€Č Pincer Ligands for the Catalytic Asymmetric Hydrogenation of Ketones and Imines. Journal of the American Chemical Society, 136(4), 1367-1380. doi:10.1021/ja4082233Rossi, S., Benaglia, M., Massolo, E., & Raimondi, L. (2014). Organocatalytic strategies for enantioselective metal-free reductions. Catalysis Science & Technology, 4(9), 2708. doi:10.1039/c4cy00033aHopmann, K. H., & Bayer, A. (2014). Enantioselective imine hydrogenation with iridium-catalysts: Reactions, mechanisms and stereocontrol. Coordination Chemistry Reviews, 268, 59-82. doi:10.1016/j.ccr.2014.01.023Ghislieri, D., & Turner, N. J. (2013). Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines. Topics in Catalysis, 57(5), 284-300. doi:10.1007/s11244-013-0184-1Schrittwieser, J. H., Velikogne, S., & Kroutil, W. (2015). Biocatalytic Imine Reduction and Reductive Amination of Ketones. Advanced Synthesis & Catalysis, 357(8), 1655-1685. doi:10.1002/adsc.201500213Zhu, C., Saito, K., Yamanaka, M., & Akiyama, T. (2015). Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation. Accounts of Chemical Research, 48(2), 388-398. doi:10.1021/ar500414xOku, T., & Ikariya, T. (2002). Enhanced Product Selectivity in Continuous N-Methylation of Amino Alcohols over Solid Acid–Base Catalysts with Supercritical Methanol. Angewandte Chemie International Edition, 41(18), 3476-3479. doi:10.1002/1521-3773(20020916)41:183.0.co;2-5Oku, T., Arita, Y., Tsuneki, H., & Ikariya, T. (2004). Continuous Chemoselective Methylation of Functionalized Amines and Diols with Supercritical Methanol over Solid Acid and Acid−Base Bifunctional Catalysts. Journal of the American Chemical Society, 126(23), 7368-7377. doi:10.1021/ja048557sHollmann, D., BĂ€hn, S., Tillack, A., & Beller, M. (2007). A General Ruthenium-Catalyzed Synthesis of Aromatic Amines. Angewandte Chemie International Edition, 46(43), 8291-8294. doi:10.1002/anie.200703119Hollmann, D., BĂ€hn, S., Tillack, A., & Beller, M. (2007). Eine allgemeine rutheniumkatalysierte Synthese von aromatischen Aminen. Angewandte Chemie, 119(43), 8440-8444. doi:10.1002/ange.200703119Hollmann, D., BĂ€hn, S., Tillack, A., & Beller, M. (2008). N-Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chemical Communications, (27), 3199. doi:10.1039/b803114bSaidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie International Edition, 48(40), 7375-7378. doi:10.1002/anie.200904028Saidi, O., Blacker, A. J., Farah, M. M., Marsden, S. P., & Williams, J. M. J. (2009). Selective Amine Cross-Coupling Using Iridium-Catalyzed «Borrowing Hydrogen» Methodology. Angewandte Chemie, 121(40), 7511-7514. doi:10.1002/ange.200904028Guillena, G., RamĂłn, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie International Edition, 50(13), 3006-3009. doi:10.1002/anie.201006660Zhao, Y., Foo, S. W., & Saito, S. (2011). Iron/Amino Acid Catalyzed Direct N-Alkylation of Amines with Alcohols. Angewandte Chemie, 123(13), 3062-3065. doi:10.1002/ange.201006660BĂ€hn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., & Beller, M. (2011). The Catalytic Amination of Alcohols. ChemCatChem, 3(12), 1853-1864. doi:10.1002/cctc.201100255Abarca, B., Adam, R., & Ballesteros, R. (2012). An efficient one pot transfer hydrogenation and N-alkylation of quinolines with alcohols mediated by Pd/C/Zn. Organic & Biomolecular Chemistry, 10(9), 1826. doi:10.1039/c1ob05888fYang, Q., Wang, Q., & Yu, Z. (2015). Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chemical Society Reviews, 44(8), 2305-2329. doi:10.1039/c4cs00496eYin, Z., Zeng, H., Wu, J., Zheng, S., & Zhang, G. (2016). Cobalt-Catalyzed Synthesis of Aromatic, Aliphatic, and Cyclic Secondary Amines via a «Hydrogen-Borrowing» Strategy. ACS Catalysis, 6(10), 6546-6550. doi:10.1021/acscatal.6b02218Arachchige, P. T. K., Lee, H., & Yi, C. S. (2018). Synthesis of Symmetric and Unsymmetric Secondary Amines from the Ligand-Promoted Ruthenium-Catalyzed Deaminative Coupling Reaction of Primary Amines. The Journal of Organic Chemistry, 83(9), 4932-4947. doi:10.1021/acs.joc.8b00649MĂŒller, T. E., & Beller, M. (1998). Metal-Initiated Amination of Alkenes and Alkynes†. Chemical Reviews, 98(2), 675-704. doi:10.1021/cr960433dBeller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F., & Tada, M. (2008). Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108(9), 3795-3892. doi:10.1021/cr0306788Leyva-Pérez, A., Cabrero-Antonino, J. R., Cantín, A., & Corma, A. (2010). Gold(I) Catalyzes the Intermolecular Hydroamination of Alkynes with Imines and Produces α,αâ€Č,N-Triarylbisenamines: Studies on Their Use As Intermediates in Synthesis. The Journal of Organic Chemistry, 75(22), 7769-7780. doi:10.1021/jo101674tYim, J. C.-H., & Schafer, L. L. (2014). Efficient Anti-Markovnikov-Selective Catalysts for Intermolecular Alkyne Hydroamination: Recent Advances and Synthetic Applications. European Journal of Organic Chemistry, 2014(31), 6825-6840. doi:10.1002/ejoc.201402300Gui, J., Pan, C.-M., Jin, Y., Qin, T., Lo, J. C., Lee, B. J., 
 Baran, P. S. (2015). Practical olefin hydroamination with nitroarenes. Science, 348(6237), 886-891. doi:10.1126/science.aab0245Huang, L., Arndt, M., Gooßen, K., Heydt, H., & Gooßen, L. J. (2015). Late Transi
    • 

    corecore