624 research outputs found

    The institutional and cultural framing of the educational stratification in fertility. A review of the role of labor market institutions and attitudinal orientations

    Get PDF
    none1noThe aim of this article is to overcome the incomplete explanation of previous research findings on the societal determinants of the educational fertility differentials in Europe. Our analysis draws on two overlooked factors, the role of labour market setting and the diffusion of new values. Combining ESS, EVS and WVS data for 2004–2009 with contextual indicators on labour market setting and cultural orientations, our multilevel analysis shows that labour market conditions in terms of share of part time jobs, dimension of public sector employment and strictness of EPL do not systematically modify the gradient of fertility by parities. But instead, we observe a clear moderator effect of attitudinal orientations. Results show that in societies where postmodernism is widespread, both high and low educated women are less likely to have children. A high diffusion of gender egalitarianism is associated with a reduction of the gradient through an increase of the likelihood of having a child especially for higher educated women. This article concludes by highlighting some responses to societal polarization of fertility related to both structural and cultural factors and indicates avenues for future research on the social stratification of fertility.mixedBellani D.Bellani D

    Slip-velocity of large neutrally-buoyant particles in turbulent flows

    Full text link
    We discuss possible definitions for a stochastic slip velocity that describes the relative motion between large particles and a turbulent flow. This definition is necessary because the slip velocity used in the standard drag model fails when particle size falls within the inertial subrange of ambient turbulence. We propose two definitions, selected in part due to their simplicity: they do not require filtration of the fluid phase velocity field, nor do they require the construction of conditional averages on particle locations. A key benefit of this simplicity is that the stochastic slip velocity proposed here can be calculated equally well for laboratory, field, and numerical experiments. The stochastic slip velocity allows the definition of a Reynolds number that should indicate whether large particles in turbulent flow behave (a) as passive tracers; (b) as a linear filter of the velocity field; or (c) as a nonlinear filter to the velocity field. We calculate the value of stochastic slip for ellipsoidal and spherical particles (the size of the Taylor microscale) measured in laboratory homogeneous isotropic turbulence. The resulting Reynolds number is significantly higher than 1 for both particle shapes, and velocity statistics show that particle motion is a complex non-linear function of the fluid velocity. We further investigate the nonlinear relationship by comparing the probability distribution of fluctuating velocities for particle and fluid phases

    When equity matters for marital stability: Comparing German and U.S. couples

    Get PDF
    none3siComparing West Germany and the U.S., we analyze the association between equity—in terms of the relative gender division of paid and unpaid work hours—and the risk of marriage dissolution. Our aim is to identify under what conditions equity influences couple stability. We apply event-history analysis to marriage histories using data from the German Socio-Economic Panel for West Germany and the Panel Study of Income Dynamics for the U.S. for the period 1986–2009/10. For the U.S., we find that deviation from equity is particularly destabilizing when the wife underbenefits, especially when both partners’ paid work hours are similar. In West Germany, equity is less salient. Instead, we find that the male breadwinner model remains the single most stable couple arrangement.mixedBellani D.; Esping Andersen G.; Pessin L.Bellani D.; Esping Andersen G.; Pessin L

    Plateau insulator transition in graphene

    Full text link
    The quantum Hall effect in a single-layer graphene sample is studied in strong magnetic fields up to 28 T. Our measurements reveal the existence of a metal- insulator transition from filling factor Îœ=−2\nu=-2 to Îœ=0\nu=0. The value of the universal scaling exponent is found to be Îș=0.57\kappa=0.57 in graphene and therefore in a truly two-dimensional system. This value of Îș\kappa is in agreement with the accepted universal value for the plateau-insulator transitions in standard quasi two-dimensional electron and hole gases.Comment: 10 pages, 5 figure

    Directed growth and fusion of membrane-wall microdomains requires CASP-mediated inhibition and displacement of secretory foci.

    Get PDF
    Casparian strips (CS) are aligned bands of lignin-impregnated cell walls, building an extracellular diffusion barrier in roots. Their structure profoundly differs from tight junctions (TJ), analogous structures in animals. Nonetheless, CS membrane domain (CSD) proteins 1-5 (CASP1-5) are homologues of occludins, TJ components. CASP-marked membranes display cell wall (matrix) adhesion and membrane protein exclusion. A full CASP knock-out now reveals CASPs are not needed for localized lignification, since correctly positioned lignin microdomains still form in the mutant. Ultra-structurally, however, these microdomains are disorganized, showing excessive cell wall growth, lack of exclusion zone and matrix adhesion, and impaired exocyst dynamics. Proximity-labelling identifies a Rab-GTPase subfamily, known exocyst activators, as potential CASP-interactors and demonstrate their localization and function at the CSD. We propose that CASP microdomains displace initial secretory foci by excluding vesicle tethering factors, thereby ensuring rapid fusion of microdomains into a membrane-cell wall band that seals the extracellular space

    Actual performance of mechanical ventilators in ICU: a multicentric quality control study.

    Get PDF
    Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines

    Position paper of the Italian Association of Medical Oncology on the impact of COVID-19 on Italian oncology and the path forward: the 2021 Matera statement

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has severely affected cancer care and research by disrupting the prevention and treatment paths as well as the preclinical, clinical, and translational research ecosystem. In Italy, this has been particularly significant given the severity of the pandemic's impact and the intrinsic vulnerabilities of the national health system. However, whilst detrimental, disruption can also be constructive and may stimulate innovation and progress. The Italian Association of Medical Oncology (AIOM) has recognized the impact of COVID-19 on cancer care continuum and research and proposes the '2021 Matera statement' which aims at providing pragmatic guidance for policymakers and health care institutions to mitigate the impact of the global health crisis on Italian oncology and design the recovery plan for the post-pandemic scenario. The interventions are addressed both to the pillars (prevention, diagnosis, treatment, follow-up, health care professionals) and foundations of cancer care (communication and care relationship, system organization, resources, research, networking). The priorities to be implemented can be summarized in the MATERA acronym: Multidisciplinarity; Access to cancer care; Telemedicine and Territoriality; Equity, ethics, education; Research and resources; Alliance between stakeholders and patients

    Design of functionalized gold nanoparticle probes for computed tomography imaging

    Get PDF
    The development of new molecules able to efficiently act as long-circulating computed tomography (CT) contrast agents is one of the most crucial topics in the biomedical field. In the last years, the chance to manipulate materials at the nano-size level gave new boost to this research, with the specific aim to design innovative nanoprobes. Gold nanoparticles (AuNPs) have showed unique X-rays attenuation properties which, combined with their easy surface functionalization, makes them ideal candidates for the next generation of contrast agents. In this paper, we present a rational and facile approach to synthesize engineered and water-stable AuNPs, achieving concentrated colloidal solution with high Hounsfield Units (HU). An accurate control of reagents ratio allowed us to design AuNPs with different shapes, from symmetrical to anisotropic morphology, in a convenient \u2018one-pot\u2019 fashion. Their activity as efficient and reliable CT contrast agents has been evaluated and compared. Moreover, glucosamine-functionalized gold nanoparticles have been developed ([Au] = 31.20 mg/mL; HU = 2453), in order to obtain a CT contrast agent able to combine spatial resolution with metabolic information

    Diffusion in disordered systems under iterative measurement

    Full text link
    We consider a sequence of idealized measurements of time-separation Δt\Delta t onto a discrete one-dimensional disordered system. A connection with Markov chains is found. For a rapid sequence of measurements, a diffusive regime occurs and the diffusion coefficient DD is analytically calculated. In a general point of view, this result suggests the possibility to break the Anderson localization due to decoherence effects. Quantum Zeno effect emerges because the diffusion coefficient DD vanishes at the limit Δt→0\Delta t \to 0.Comment: 8 pages, 0 figures, LATEX. accepted in Phys.Rev.
    • 

    corecore