1,083 research outputs found
Stability of junction configurations in ferromagnet-superconductor heterostructures
We investigate the stability of possible order parameter configurations in
clean layered heterostructures of the type, where is a
superconductor and a ferromagnet. We find that for most reasonable values
of the geometric parameters (layer thicknesses and number) and of the material
parameters (such as magnetic polarization, wavevector mismatch, and oxide
barrier strength) several solutions of the {\it self consistent} microscopic
equations can coexist, which differ in the arrangement of the sequence of ``0''
and ``'' junction types (that is, with either same or opposite sign of the
pair potential in adjacent layers). The number of such coexisting self
consistent solutions increases with the number of layers. Studying the relative
stability of these configurations requires an accurate computation of the small
difference in the condensation free energies of these inhomogeneous systems. We
perform these calculations, starting with numerical self consistent solutions
of the Bogoliubov-de Gennes equations. We present extensive results for the
condensation free energies of the different possible configurations, obtained
by using efficient and accurate numerical methods, and discuss their relative
stabilities. Results for the experimentally measurable density of states are
also given for different configurations and clear differences in the spectra
are revealed. Comprehensive and systematic results as a function of the
relevant parameters for systems consisting of three and seven layers (one or
three junctions) are given, and the generalization to larger number of layers
is discussed.Comment: 17 pages, including 14 Figures. Higher resolution figures available
from the author
Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions
BACKGROUND:
Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive.
RESULTS:
We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC) in peripheral blood mononuclear cells); the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy.
CONCLUSION:
Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting
Australian Group on Antimicrobial Resistance (AGAR) Australian Gram-negative Sepsis Outcome Programme (GnSOP) Annual Report 2020
The Australian Group on Antimicrobial Resistance (AGAR) performs regular period-prevalence studies to monitor changes in antimicrobial resistance in selected enteric gram-negative pathogens. The 2020 survey was the eighth year to focus on bloodstream infections caused by Enterobacterales, and the sixth year in which Pseudomonas aeruginosa and Acinetobacter species were included. Eight thousand seven hundred and fifty-two isolates, comprising Enterobacterales (7,871, 89.9%), P. aeruginosa (771, 8.8%) and Acinetobacter species (110, 1.3%), were tested using commercial automated methods. The results were analysed using Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints (January 2021). Of the key resistances, resistance to the third-generation cephalosporin ceftriaxone was found in 13.5%/13.5% (CLSI/EUCAST criteria) of Escherichia coli and 8.7%/8.7% of Klebsiella pneumoniae. Resistance rates to ciprofloxacin were 16.1%/16.1% for E. coli; 9.9%/9.9% for K. pneumoniae; 5.8%/5.8% for Enterobacter cloacae complex; and 4.5%/8.1% for P. aeruginosa. Resistance rates to piperacillin-tazobactam were 2.5%/6.6%; 3.9%/12.5%; 16.9%/26.3%; and 5.5%/14.4% for the same four species respectively. Thirty-two isolates from 32 patients were shown to harbour at least one carbapenemase gene: 19 blaIMP-4, three blaGES-5, two blaNDM-1, two blaNDM-5, two blaOXA-48, two blaOXA-181, one blaIMI-1, and one blaOXA-23+NDM-1
A biphotons double slit experiment
In this paper we present a double slit experiment where two undistinguishable
photons produced by type I PDC are sent each to a well defined slit. Data about
the diffraction and interference patterns for coincidences are presented and
discussed. An analysis of these data allows a first test of standard quantum
mechanics against de Broglie-Bohm theory
Entangled-Photon Generation from Parametric Down-Conversion in Media with Inhomogeneous Nonlinearity
We develop and experimentally verify a theory of Type-II spontaneous
parametric down-conversion (SPDC) in media with inhomogeneous distributions of
second-order nonlinearity. As a special case, we explore interference effects
from SPDC generated in a cascade of two bulk crystals separated by an air gap.
The polarization quantum-interference pattern is found to vary strongly with
the spacing between the two crystals. This is found to be a cooperative effect
due to two mechanisms: the chromatic dispersion of the medium separating the
crystals and spatiotemporal effects which arise from the inclusion of
transverse wave vectors. These effects provide two concomitant avenues for
controlling the quantum state generated in SPDC. We expect these results to be
of interest for the development of quantum technologies and the generation of
SPDC in periodically varying nonlinear materials.Comment: submitted to Physical Review
Generation of entangled states of two atoms inside a leaky cavity
An in-depth theoretical study is carried out to examine the
quasi-deterministic entanglement of two atoms inside a leaky cavity. Two
-type three-level atoms, initially in their ground states, may become
maximally entangled through the interaction with a single photon. By working
out an exact analytic solution, we show that the probability of success depends
crucially on the spectral function of the injected photon. With a cavity
photon, one can generate a maximally entangled state with a certain probability
that is always less than 50%. However, for an injected photon with a narrower
spectral width, this probability can be significantly increased. In particular,
we discover situations in which entanglement can be achieved in a single trial
with an almost unit probability
Superconductor coupled to two Luttinger liquids as an entangler for electron spins
We consider an s-wave superconductor (SC) which is tunnel-coupled to two
spatially separated Luttinger liquid (LL) leads. We demonstrate that such a
setup acts as an entangler, i.e. it creates spin-singlets of two electrons
which are spatially separated, thereby providing a source of electronic
Einstein-Podolsky-Rosen pairs. We show that in the presence of a bias voltage,
which is smaller than the energy gap in the SC, a stationary current of
spin-entangled electrons can flow from the SC to the LL leads due to Andreev
tunneling events. We discuss two competing transport channels for Cooper pairs
to tunnel from the SC into the LL leads. On the one hand, the coherent
tunneling of two electrons into the same LL lead is shown to be suppressed by
strong LL correlations compared to single-electron tunneling into a LL. On the
other hand, the tunneling of two spin-entangled electrons into different leads
is suppressed by the initial spatial separation of the two electrons coming
from the same Cooper pair. We show that the latter suppression depends
crucially on the effective dimensionality of the SC. We identify a regime of
experimental interest in which the separation of two spin-entangled electrons
is favored. We determine the decay of the singlet state of two electrons
injected into different leads caused by the LL correlations. Although the
electron is not a proper quasiparticle of the LL, the spin information can
still be transported via the spin density fluctuations produced by the injected
spin-entangled electrons.Comment: 15 pages, 2 figure
Have mirror micrometeorites been detected?
Slow-moving ( km/s) 'dark matter particles' have allegedly been
discovered in a recent experiment. We explore the possibility that these slow
moving dark matter particles are small mirror matter dust particles originating
from our solar system. Ways of further testing our hypothesis, including the
possibility of observing these dust particles in cryogenic detectors such as
NAUTILUS, are also discussed.Comment: Few changes, about 8 pages lon
Quantum theory of two-photon interference
In this paper, we study two-photon interference with the approach of photon
quantum theory, with specific attention to the two-photon interference
experiment carried out by Milena D'Angelo et al. (Phys. Rev. Lett 87:013602,
2001). We find the theoretical result is accordance with experiment data.Comment: arXiv admin note: substanital text overlap with arXiv:1011.3593, and
with arXiv:quant-ph/0408001, arXiv:quant-ph/0103035 by other author
- …