40,028 research outputs found

    Computer performance analysis - Measurement objectives and tools

    Get PDF
    Objectives and measurements in computer performance analysi

    The Relativistically Spinning Charged Sphere

    Full text link
    When the equatorial spin velocity, vv, of a charged conducting sphere approaches cc, the Lorentz force causes a remarkable rearrangement of the total charge qq. Charge of that sign is confined to a narrow equatorial belt at latitudes b⩽3(1−v2/c2)1/2b \leqslant \sqrt{3} (1 - v^2/c^2)^{{1/2}} while charge of the opposite sign occupies most of the sphere's surface. The change in field structure is shown to be a growing contribution of the `magic' electromagnetic field of the charged Kerr-Newman black hole with Newton's G set to zero. The total charge within the narrow equatorial belt grows as (1−v2/c2)−1/4(1-v^2/c^2)^{-{1/4}} and tends to infinity as vv approaches cc. The electromagnetic field, Poynting vector, field angular momentum and field energy are calculated for these configurations. Gyromagnetic ratio, g-factor and electromagnetic mass are illustrated in terms of a 19th Century electron model. Classical models with no spin had the small classical electron radius e2/mc2∼e^2/mc^2\sim a hundredth of the Compton wavelength, but models with spin take that larger size but are so relativistically concentrated to the equator that most of their mass is electromagnetic. The method of images at inverse points of the sphere is shown to extend to charges at points with imaginary co-ordinates.Comment: 15 pages, 1figur

    Fine-grained uncertainty relation and nonlocality of tripartite systems

    Full text link
    The upper bound of the fine-grained uncertainty relation is different for classical physics, quantum physics and no-signaling theories with maximal nonlocality (supper quantum correlation), as was shown in the case of bipartite systems [J. Oppenheim and S. Wehner, Science 330, 1072 (2010)]. Here, we extend the fine-grained uncertainty relation to the case of tripartite systems. We show that the fine-grained uncertainty relation determines the nonlocality of tripartite systems as manifested by the Svetlichny inequality, discriminating between classical physics, quantum physics and super quantum correlations.Comment: 4 page

    A Detail in Kronecker's Program

    Get PDF
    It was Kronecker who sought to avoid the use in mathematics of all numbers (negatives, fractions, irrationals) other than the positive integers, and he outlined the means for carrying through this program. In the introductory sections of his memoir he briefly indicates the personal philosophy which made such a project appear desirable

    Bell's theorem as a signature of nonlocality: a classical counterexample

    Full text link
    For a system composed of two particles Bell's theorem asserts that averages of physical quantities determined from local variables must conform to a family of inequalities. In this work we show that a classical model containing a local probabilistic interaction in the measurement process can lead to a violation of the Bell inequalities. We first introduce two-particle phase-space distributions in classical mechanics constructed to be the analogs of quantum mechanical angular momentum eigenstates. These distributions are then employed in four schemes characterized by different types of detectors measuring the angular momenta. When the model includes an interaction between the detector and the measured particle leading to ensemble dependencies, the relevant Bell inequalities are violated if total angular momentum is required to be conserved. The violation is explained by identifying assumptions made in the derivation of Bell's theorem that are not fulfilled by the model. These assumptions will be argued to be too restrictive to see in the violation of the Bell inequalities a faithful signature of nonlocality.Comment: Extended manuscript. Significant change

    Electromagnetic Magic: The Relativistically Rotating Disk

    Full text link
    A closed form analytic solution is found for the electromagnetic field of the charged uniformly rotating conducting disk for all values of the tip speed vv up to cc. For v=cv=c it becomes the Magic field of the Kerr-Newman black hole with GG set to zero. The field energy, field angular momentum and gyromagnetic ratio are calculated and compared with those of the electron. A new mathematical expression that sums products of 3 Legendre functions each of a different argument, is demonstrated.Comment: 10 pages, one figur

    Relativistic Poynting Jets from Accretion Disks

    Full text link
    A model is developed for relativistic Poynting jets from the inner region of a disk around a rotating black hole. The disk is initially threaded by a dipole-like magnetic field. The model is derived from the special relativistic equation for a force-free electromagnetic field. The ``head'' of the Poynting jet is found to propagate outward with a velocity which may be relativistic. The Lorentz factor of the head (Gamma) is found to be dependent on the magnetic field strength close to the black hole, B_0, the density of the external medium n_ext, and on the ratio R=r_0/r_g >1, where r_g is the gravitational radius of the black hole, and r_0 is the radius of the O-point of the initial dipole field threading the disk. For conditions pertinent to an active galactic nuclei, Gamma is approximately equal to 8 (10/R)^(1/3) (B_0/10^3 Gauss)^(1/3) (1/cm^3/n_ext)^(1/6). This model offers an explanation for the observed Lorentz factors which are of the order of 10 for the parsec-scale radio jets measured with very long baseline interferometry.Comment: 4 pages, 1 figur
    • …
    corecore