research

The Relativistically Spinning Charged Sphere

Abstract

When the equatorial spin velocity, vv, of a charged conducting sphere approaches cc, the Lorentz force causes a remarkable rearrangement of the total charge qq. Charge of that sign is confined to a narrow equatorial belt at latitudes b3(1v2/c2)1/2b \leqslant \sqrt{3} (1 - v^2/c^2)^{{1/2}} while charge of the opposite sign occupies most of the sphere's surface. The change in field structure is shown to be a growing contribution of the `magic' electromagnetic field of the charged Kerr-Newman black hole with Newton's G set to zero. The total charge within the narrow equatorial belt grows as (1v2/c2)1/4(1-v^2/c^2)^{-{1/4}} and tends to infinity as vv approaches cc. The electromagnetic field, Poynting vector, field angular momentum and field energy are calculated for these configurations. Gyromagnetic ratio, g-factor and electromagnetic mass are illustrated in terms of a 19th Century electron model. Classical models with no spin had the small classical electron radius e2/mc2e^2/mc^2\sim a hundredth of the Compton wavelength, but models with spin take that larger size but are so relativistically concentrated to the equator that most of their mass is electromagnetic. The method of images at inverse points of the sphere is shown to extend to charges at points with imaginary co-ordinates.Comment: 15 pages, 1figur

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020