@ https://ntrs.nasa.gov/search.jsp?R=19710014547 2020-03-11T21:04:43+00:00Z

N7i- 24023
Asa CcR -)| g0 ‘3?7

R-584-NASA/PR
February 1971

COMPUTER PERFORMANCE ANALYSIS:
MEASUREMENT OBJECTIVES AND TOOLS

T. E. Bell

A Report prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AND
UNITED STATES AIR FORCE PROJECT RAND

SANTA MONICA, CA. 90406

This research is sponsored by the National Aeronautics and Space
Administration under Contract No. NAS~12- 21-44 and the United

States Air Force under Project Rand-— Contract No. F44620~ 67-C~-0045—
monitored by the Directorate of Operational Requirements and Development
Plans, Deputy Chief of Staff, Research and Development, Hq USAF. Views
or conclusions contained in this study should not be interpreted as representing
the official opinion or policy of Rand, NASA or of the United States Air Force.

R-584-NASA/PR
February 1971

COMPUTER PERFORMANCE ANALYSIS:
MEASUREMENT OBJECTIVES AND TOOLS

T. E. Bell

A Report prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AND

UNITED STATES AIR FORCE PROJECT RAND

SANTA MONICA, CA. 90406

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; 1TS DISTRIBUTION 15 UNLIMITED.

Rand maintains a number of special, subject bibliographies containing abstracts of
Rand publications in fields of wide current interest. The following bibliographies are
available upon request:

Africa « Arms Control « Civil Defense « Combinatorics
Communication Satellites « Communication Systems «» Communist China
Computing Technology « Decisionmaking » East-West Trade
Education « Foreign Aid « Health-related Research « Latin America
Linguistics = Long-range Forecasting « Maintenance
Mathematical Modeling of Physiological Processes « Middle East
Policy Sciences » Pollution ¢ Procurement and R&D Strategy
Program Budgeting « SIMSCRIPT and Its Applications « Southeast Asia
" Systems Analysis « Television ¢ Urban Problems « USSR
Water Resources « Weather Forecasting and Control

To obtain copies of these bibliographies, and to receive information on how to obtain

copies of individual publications, write to. Communications Department, Rand,
1700 Main Street, Santa Mcnica, California 90406.

Published by The Rand Corporation

-iii-

PREFACE

This report represents one in a series of studies on
computer performance analysis. As computers have increased
in cost and complexity, the Air Force and NASA have in-
creased their efforts in performance analysis. Analysts in
each new increment of effort must decide whether formal per-
formance analysis is justified and, if so, what tools to use
in the study. This report's purpose is to aid present or
potential analysts make such decisions so that they can pro-
ceed to a number of other critical topics in performance
analysis to maintain high cost-effectiveness of computer
systems.

Although initial work for this report was sponsored by
NASA, the Air Force's large investment in computers and in-
creasing interest in performance analysis led to continua-

tion of the work under Project Rand.

—

SUMMARY

This report suggests a number of objectives for com-
puter system measurement and analysis beyond the commonly
accepted one of tuning. Objectives in computer operations--
identifying operational problems and improving operational
control--mean that personnel in this area should become fa-
miliar with the new tools and techniques. Computer system
simulators should be concerned with model validation as well
as model development. Installation managers need results
from this field in order to select equipment, trade man-time
for machine-time, and tune installed equipment.

Data collection tools for use in measurement and analy-
sis are necessary to fulfill these objectives. These tools
range from simple, inexpensive ones--audio and visual indi-
cators, operator opinions, and logs--to the more sophisti-
cated hardware and software monitors. Each of the simple
tools can provide initial indications of performance, but
hardware and software monitors are usually necessary for a
thorough analysis. Five binary characteristics can describe
a monitor: (1) implementation medium, (2) separability,

(3) sample portion, (4) analysis concurrency, and (5) data
presentation. An analyst should determine the characteris-
tics his analysis requires before choosing a product.

Recognizing objectives and choosing measurement tools
are two important steps in a performance analysis study.
This report deals with these two topics so that analysts
can proceed to four more difficult and critical topics.
Modeling, choosing a data collection mode, experimental
design, and data analysis deserve at least as much atten-

tion as examining data collection tools.

-vii-

CONTENTS

PREFACE osscovaecoceossscssssssesossscs cesccasoccsena eeoes 1ii
SUMMARY .ccoeccoecssscncss cssescscssass cecvescusanosmene v

Section
I. INTRODUCTION .ccccosccassesns cecencssoscoecoea aoseso 1
II. WHY MEASURE AND ANALYZE? .cccecscososscesnavnsssss 2
Identifying Operational Problemsceocss0 . 2
Operational Controlccceeocosasacscacsccs 3
Simulation DAat@ ..cocesscsessasccsososscsaccsscs 4
Defining Simulation Models ...c..occeccanassss 5
Equipment Selectionco0000.. cesesescesssan 7
Trading Man-Time for Machine-Timeo.. 8
TUNING cecovaccconcsn weoscesassesesseacssre s .o 8
III. DATA COLLECTION TECHNIQUES ..cccececcoscossacoss 11
Audio and Visual Clues .ccecesas ceeceesss e) §
Opinions of Operating Personnelcco.0.. 13
LOgS .vevooassccoss seesencasens ecesscoscsacna e 13
Hardware Monitorscccea. cescssecesesas e 14
Self-Monitoring ..ccceeocceccsssconcoscosscos . 16
Monitoring with Another Computer I
Data Collection cesessceseseasns .
Full-Time Monitoring cocanooe sscesass .. 18
Sampling .cceeccesse cesaseee tesessssesssscass 18
Data Reductionccsessecocescsccccsoccsnnss 18
USAgEe .cosencsssssvssons caeccane sssocsscasasaes - 19
Software MonitoOrs ..cceoscoccecesss ceesasas aeees 19
Accounting Systems caeesen ceecceacs cee. 21
Semi-Separate Monitorccce0cco ceeecenn 21
Tracing c..cccoescsescoooosssccsosoccssasns cees 22
Sampling ...e..o seosessceasessssssesss s esea 23
Special ProgramsSscceeccccssansscs essses 25
Categorizing Monitorscceoccoooccsccosccs 26
IV. BEYOND TOOLS: A CAVEAT ...2000s0 coesccoe ceosoces 29

REFERENCES ..o sasceenasoescos cescessoe cosoosccooccons s 31

I. INTRODUCTION

The necessity for some type of performance evaluation
in computer systems is becoming widely recognized. Some
recently announced computer systems include hardware monitors
to aid in determining performance. The measurement portion
of the American computer industry is growing rapidly; even
the relatively less-advanced Russian AIST-0 operating sys-
tem+ will include integral performance measurement.

Work in performance evaluation tends to emphasize the
development and choice of measurement tools that improve
performance. Unfortunately, this emphasis diverts effort
from other important issues in performance analysis and con-
centrates interest almost exclusively on improving the per-
formance of operational systems.

Typically, an installation that undertakes performance
evaluation begins by reviewing the available measurement
tools. Each vendor's product is evaluated and one product
is finally chosen. The tool is then used to gather data,
which often are not in a useful form. Some criteria are
needed so that an appropriate choice of tools can be made
and effort concentrated on planning data collection and
analysis. Section II discusses the various reasons for con-
sidering performance analysis. Determining the appropriate
objectives should lead to more effective use of tools as

well as to better analysis.

TA time-sharing system being developed in Novosibirsk
at an Institute of the Soviet Academy of Sciences.

IT. WHY MEASURE AND ANALYZE?

Measurement and analysis of a computer system are usually
expensive. Data collection hardware and software must be
developed or purchased, the system must be disrupted during
tests, and even monitoring during normal operations often
slows processing. Personnel must plan and execute experi-
ments, reduce data (and correct erroneous records), agonize
over results as conclusions are formed, and implement indi-
cated actions--the rationale for the entire process.

In addition to being expensive, this process disrupts
the normal interactionibetween operators and computer.
Nevertheless, interest in measurement and evaluation is in-
creasing. The advent of third-generation systems marks the
end of the period when human abilities were adequate to
understand operations without formal measurement and anal-
ysis. Today, systematized procedures are necessary for good

operational control, equipment selection, and system tuning.+

IDENTIFYING OPERATIONAL PROBLEMS

In second-generation batch systems, identifying oper-
ational problems involved examining elapsed machine times.
With third-generation multiprogramming, multiprocessing,
real-time, on-line, or time-shared systems, this simple
analysis process is inadequate. The volume, speed, and con-
currency of operations are too great for elapsed times to
have more than superficial meaning. In the past, an entire
system handled only one job at a time; today, resource
sharing is a normal operational mode and resource denial

is on a probabilistic basis.

1“Tuning is the process of measuring the system, under-
standing effects, and making small changes in hardware and
software that cause large increases in system performance.

Operators or systems programmers can easily (and even
accidentally) alter a system so that large parts are un-
available. For example, changing a disk's designation can
disallow its use for normal operation; the changed designa-
tion may remain undetected for long periods. Job character-
istics continually change; jobs run differently in different
combinations with other jobs. Small variations in operator
response can cause large variations in system response. Re-
source allocation in a large system does not depend on job
characteristics alone; this complex dependency causes vari-
ability in run characteristics of identical jobs.

In determining minimum variability in Rand's IBM System
360/65, we used Release 17 of IBM's 0S/MVT to run a number
of identical jobs under a variety of conditions. The stan-
dard Rand accounting system determined run characteristics
of program execution. The program performed I/0 to and from
system-allocated disk space and also used the timer to cause
frequent interrupts. When run in an otherwise idle system,
each job required an average of 15.11 sec of CPU time and per-
formed 7765 I/O operations. The standard deviations of these
values were 3.2 percent and 1.7 percent’ of the averages; the
ranges were 8.6 percent and 7.8 percent of the averages. The
only sources of variability were resource allocation and low-
level timing relationships. When other sources of variability
are active, changes several times this size are observable.
The noise (inherent random variability) in a system's oper-
ation is very large when only gross measures are used. An-
alysts often need to use special, specific metrics that
have lower noise levels so that important trends can be de-
tected. These special measures can then be used to differ-
entiate between human operator failings, inadequacies in the

operating system, and inappropriate loads from users.

OPERATIONAL CONTROL

Management can often schedule loads more efficiently if

it can determine the system-wide effects of certain job loads.

Instead of concurrently running similar jobs, heavy I/O jobs
can be concurrently run with heavy CPU jobs. If total de-
mands on I/0, CPU, core, etc., are constant, machine capacity
increases with mixed resource loading. However, this is
feasible only when detailed job characteristics are known
and understood.

Good accounting also requires an understanding of load-
ing effects. Charging should be at least partially based on
system usage, e.g., on denial of the system to others. Sig-
nificant effort is often requirea to determine the system-
wide effects of a particular load on a particular system.
After these effects become known, management may choose to
alter charging and scheduling methods to bias users away from
a load that adversely affects the system. Of course, such a
step should be taken only after measurement and analysis have

proved its correctness.

SIMULATION DATA

People simulate computers to (1) predict performance of
a new or altered configuration, (2) check their understanding
of a system, (3) determine the effect of new software, or
(4) obtain information on system capacity. A simulation is
valuable in achieving these objectives only if it reflects
reality, i.e., only if the input data accurately reflect the
real world and the simulation's logic results in data similar
to those obtainable from real systems.

Obtaining these aata for use in simulations constitutes
an important (and often neglected) application of measurement
and analysis. Although massive efforts are often devoted to
creating simulations, model validation is usually not con-
sidered worth the added 10- to 20-percent expenditure of
funds needed for a preliminary validation exercise.

This emphasis is usually understandable; in some instan-
ces, it may even be justified. If a simulation aims at in-

creasing general understanding of interactions, validation

beyond code examination may not be cost—effective.+ How-
ever, this is usually not the reason for the lack of inter-
est in validation. Measurement and validation techniques
are quite different from programming, and inexperience usu-
ally constitutes a psychological barrier that prevents the
simulator from performing even perfunctory measurement.
Instead of gathering his own data (the way he programs), the
simulator proposes that someone else do this--a request usu-
ally met with distinct disinterest. More measurement compe-
tence among simulators could alleviate the present situation

of simulation without validation.

DEFINING SIMULATION MODELS

Pre-simulation measurements can be at least as useful
as post-simulation validation measurements. Even very de-
tailed simulations are models--abstractions that explicitly
recognize a few system characteristics, approximate some,
and ignore the rest. The simulation's usefulness depencs
on consideration of appropriate characteristics; for example,
even the most accurate representation of CPU operations will
not be adequate to predict the throughput of an I/O-bound
system.

We performed a very detailed simulation of Rand's Video
Graphics System (VGS) that included the effects of a Special-

Purpose Multiplexer on an IBM 1800.1F

We began by examining
the specifications of the Special-Purpose Multiplexer,
which led to a very simple model consisting of a single
transmission rate. Because unquestioned acceptance of such
specifications can be risky, we decided to measure actual

performance.

.F

Simulation can be a valuable tool for checking overall
understanding of a software system. The discipline of simu-
lating the system can reveal many misunderstandings. If the
objective is to uncover these problems, a check of the sys-
tem's code is often all the validation necessary.

*See Ref. 1 for a description of this effort.

-6~

The 1800's Special-Purpose Multiplexer communicates
with an IBM 360/50 through an IBM 2701 to pass messages
between the two computers. We set the 360 to transmit for
60 sec and measured the amount of data transfer. Then, we
set the 1800 to transmit for 60 sec and measured data trans-
fer. We repeated the experiment under several conditions;
it strongly indicated that the data-transfer rate was not
a simple, constant value. Instead, due to the particular
hardware configuration, the data-transfer rate depended in
a complex manner on the 360 interface unit. This experiment
enabled us to identify the important variables and use a
more appropriate model.

We also analyzed data from our IBM 360/65 and deter-
mined that a scheduling simulation of this multiprogrammed
machine was inappropriate. Our simulation implicitly as-
sumed that main storage was the most important system re-
source, i.e., that having more jobs in core results in more
throughput. Data from the real system convinced us that
the number of jobs in the machine during normal operations
did not significantly affect throughput. Because our ma-
chine was very strongly I/0-bound, a simulation that con-
centrated on I/0 was far more appropriate than one that
considered core storage.

The effort involved in pre-simulation data analysis
should not be considered useful just for orienting simula-
tion work. The simulation should provide the same sorts of
data as the real system, at least for validation. There-
fore, data-analysis techniques developed for the real system
are applicable to the simulation data. The reverse is also
true: analysis tools developed for simulation data are
often applicable to data from the real system. Combining
the techniques developed in these two areas leads to im-
proved data analysis in both.

Building simulations around measured and interpreted
data increases the utility of the simulation more than

enough to justify the measurement effort.

EQUIPMENT SELECTION

Equipment selection and acquisition are important man-
agement responsibilities that cannot be delegated to an
outside organization, particularly a vendor. Vendor repre-
sentatives have an inherent bias toward solving problems by
equipment changes (usually equipment upgrades). However,
changes in the operating system or in allowed user loads may
solve some problems more efficiently. Measurement and anal-
ysis by installation personnel are imperative for rational
equipment selection.

Selecting an entirely new system is more critical and
challenging than incrementally analyzing an existing one.

A new system will have a new set of capabilities and limi-
tations; loads shift and many assumptions become invalid.
Therefore, complete measurement and analysis of both the
0ld and the new system are particularly necessary in order
to predict a new system's operation. A gross measure, e.g.,
the time to process a given set of jobs, can be extremely
deceptive; vendors might carefully arrange the job stream
to minimize elapsed time on the proposed system. Other
indicators can determine whether this is the case.

Some important questions are:

0 Will a new compiler sufficiently change system
loading so that new equipment acquisition can
be avoided?

0 Are users unknowingly generating loads that have
inappropriate characteristics for the present
configuration?

o What are the current bottlenecks in system opera-
tions? (If only one resource is limiting, only
that one should be purchased.)

0o If new equipment must be acquired, how many units
should be obtained? (Excessive acquisition of one
type of unit leads to a shifting of the bottleneck
and under-utilization of newly obtained resources.)

o Can the present configuration be downgraded without
impacting capacity? (Excess resources may be re-
turned without significant effect on the system.)

o Are quoted CPU, channel, and device utilizations
for a proposed system within the usual range of
this manufacturer's systems in the field?

o0 How would a new system react to loads that differ
from present ones?

TRADING MAN-TIME FOR MACHINE-TIME

A number of techniques are available that allegedly
increase the efficiency of personnel using the computer but
that decrease the machine's efficiency. Time-sharing, text
editors, interactive graphics, and conversational program-
ming systems are loved by the users and hated by the opera-
tors because they aid the former but reduce the machine's
capacity.

Providing user aids at the expense of machine effi-
ciency is one extreme; an opposite philosophy forces users
to act in ways that improve machine efficiency. Universal
use of one language, large blocking of test output, and
carefully designed code increase machine efficiency but
cost users an abnormally high effort to achieve any results.

In general, there is a tradeoff between the users' time
and the computer's efficiency. Only factual analysis of
system effects on both human and machine performance will
resolve the tradeoff problem. This report deals only with

measuring machine performance.

TUNING

Third-generation computer systems tend to be very sen-

sitive to minor changesa+ One of the most typical problems

+Strangely, this topic is considered controversial in
many computer installations. Systems programmers often
take the fatalistic attitude that the systems are no good
and that improvements are infeasible. The literature, how-
ever, indicates otherwise. Bemer and Ellison refer to a

in multiprogramming is I/O contention, where several jobs
have concurrent requests to the same I/0 devices. The I/0
devices (usually disk) must then respond to each in sequence
(usually by performing seeks). The total seek time greatly
exceeds total data-transfer time. Running alone, a single
job positions the disk head only a few times and transfers
data at a higher overall rate. '

In time-sharing systems, the time spent setting up jobs
(swapping) and deciding what to do next (performing task
switching, determining time quantums, etc.) can easily ex-
ceed the time spent on useful computation. Certain policies
are particularly dangerous in this environment because they
tend to aggravate bad situations. For example, time-sharing
efficiency can be very sensitive to the amount of high-speed
memory allocated to each user. As the size decreases, thrash-
ing may begin and processor utilization decreases. One re-
sponse is adding more Jjobs in an attempt to use the excess
CPU. This policy further reduces the memory for each job
and aggravates the inefficiency.

Mitigating such third-generation problems requires both
understanding potential problems and performing specific
measurements to indicate which problems are actually occur-
ring. A basic characteristic of computer systems is that
demands change over time. Because of shifting loads, tun-

ing (including measurement and analysis) must be a continuing

T

. . . 4 to 1 leverage on system productivity" [2, p. 39}:
Johnston notes an increase of 500 percent in CPU utilization
of a 360/91 [3]; Saltzer and Gintell state that ". . . the
payoff in being able to look at the meters any time a per-
formance problem is suspect . . . is very high" [4, p. 500];
Wiener and DeMarco ". . . have come to the conclusion that
most medium-sized systems with general-purpose work loads,
run at less than 30 percent CPU efficiency even when they
are running" [5]. They also note that the best systems per-
form at 75- to 80-percent efficiency.

+For an explanation of this problem, see Ref. 6.

-10-

process.+ Intensive effort must be occasionally invested

to revise operating assumptions that may have become de-
creasingly true. In addition, after each shift in hardware
and software configuration, intensive effort must be devoted
to tuning. This includes measurement immediately after an
attempt to improve system performance. All too often, a

change has related, unanticipated effects elsewhere in
the system.:lt

TBemer and Ellison state that "instrumentation should
be applied to software with the same frequency and uncon-
scious habit with which oscilloscopes are used by the hard-
ware engineer" [2, p. 39].

*For example, rounding up segment sizes to an integral
number of page sizes may reduce external core fragmentation
but cause less efficient use of core [7].

-11-

ITI. DATA COLLECTION TECHNIQUES

Simple indicators of system performance furnish much
less information than more sophisticated ones, but also
cost much less. Understanding and using both kinds of
indicators should be considered important.

AUDIO AND VISUAL CLUES

Each time a piece of unit record equipment processes
a record, it emits a sound. The systems analyst can use
this sound to roughly estimate activity and judge the oc-
currence of certain system-wide problems. For example, a
multiprogrammed system may be experiencing severe disk con-
tention in attempting to print spooled records.+ Quite
often, this problem manifests itself in strongly synchro-
nized printing from the several printers on a large system.
As the disk head moves from track to track, first one then
another printer operates. When one printer completes out-
put for its job, the other printer(s) begins operating at
a sharply increased rate.

Usually, the manufacturers provide visual clues in the
form of incandescent or neon lights. "Watching the lights

blink" can be a useful pastime for the analyst. On IBM

T"Spooling" involves the temporary storage (usually on
disk) of input or output for a job during job execution.
Input is stored prior to initiating execution and output is
put in its final form (usually printed or punched) after
execution. In multiprogrammed systems, this keeps input and
output for each job in known places. Since several jobs are
simultaneously proceeding to completion, outputting to a
printer would cause printing for one job to be interspersed
with printing for all others; an overwhelming cutting and
pasting job would result. Instead, a job's total output is
put in a special file on disk or tape; other jobs have their
output placed in other files. After a job has completed
execution, its total output is printed (and/or punched), at
one time, by special utilities. In addition, spooling allows
faster devices than printers or punches to be used for out-
putting while that job is in core. The slower, final output
of data can then be done by a small, efficient utility
routine.

-12-

System 360s, WAIT and SYSTEM lights are usually the most
sharply observed. The CPU is idle if the WAIT light is on;
some part of the system is active if the SYSTEM light is on.
Because the lights are incandescent, they crudely integrate
system activity over time. A very bright WAIT light with

a blinking SYSTEM light usually indicates an inefficiently
used CPU--an I/O-bound system. A system operating in multi-
programming mode with a solid SYSTEM light and a very dim
or completely dark WAIT light usually means a CPU-bound
system, one making very good use»of its CPU (or hung in a
coding loop). Other lights on channels and controllers
indicate activity on these resources.

The availability and obviousness of lights are too good
to be true. We carefully measured the actual activity of
various interrupt levels on an IBM 1800 and also watched the
console lights. We were barely able to visually detect the
difference between one light, active 0.3 percent of the
time, and the one next to it, active 1 percent of the time.
We were able to detect when one light was switched from 35-
percent activity to 70 percent, but were unable to visually
determine when activity increased to 100 percent. Visually
perceived light intensity is highly non-linear with actual
activity; great caution should be used in interpreting the
lights.

Multiple, rapidly spinning tapes and extremely active
disk heads can,; in some environments, indicate severe trouble.
'In other environments (where loads should be causing this
kind of behavior), they may indicate a smoothly running system.
Unfortunately, most installations fall somewhere between these
two extremes, leaving managers with an amorphous feeling of
unease. The simple clues are valuable first impression de-
vices; however, more substantive data are usually needed to

meet analysis objectives.

-13-

OPINIONS OF OPERATING PERSONNEL

Because operators are in intimate contact with the ma-
chine, they are usually one of the primary sources of data.
For example, attempts to improve physical layout and deci-
sions on where to place unit record equipment, tapes, and
consoles can greatly benefit from their opinions.

Unfortunately, operators are not unbiased observers.
They are responsible for the system's continued operation
and they unconsciously weight trouble-causing jobs more
heavily than jobs that require no special operator activity.+
Good operators make sure the job flow is steady and, within
available alternatives, they have the jobs processed as
quickly as possible.

At Rand's Computation Center, operators use the number
of jobs completed as the primary indicator of system per-
formance. Typical cumulative numbers for each hour of the
day are compared with the actual number to determine per-
formance. Obviously, this indicator is very sensitive to
job mix, hardware failure, and simple randomness in se-

guencing, but it has the distinct advantage of availability.

LOGS

Most installations have printed forms on which users
enter job names, submission time, and a few job parameters.
These forms also commonly record the exit of the job from
the computer center by adding the time of sign-out (making
output available to the user). These logs can be used to

determine total turnaround time in the computing center (as

+Peter Blau, investigating the activities of office

personnel faced with a multitude of objectives, found that
a few objectives were picked by the personnel as important;
the rest were ignored (see p. 231, note 9 of Ref. 8). Com-
puter operators seem to act similarly.

..14._

opposed to turnaround time within the machine itself). The
data are also used to determine how long users take to make
corrections before resubmitting a job.'r Although sign-in
logs are considerably more reliable than an individual's
subjective evaluation, they are often questionable due to
poor handwriting and inaccurate data entry (users continue
to misread wall clocks).

Conscle logs produced by the machine often contain very
interesting information about the man-computer interface:;
however, this information is buried in such a quantity of
data that manual extraction becomes infeasible. Although
information for general analysis may be too difficult to
access, the console log can be very valuable for detailed
data about specific interactions.

Audio clues, visual clues, operator opinion, and logs
can only provide gross performance indicators. On the
other hand, hardware and software monitors can provide de-
tailed data on internal system operations. However, an in-
crease in the cost of the data collection device matches

this increase in data.

HARDWARE MONITORS

A hardware monitor obtains signals from a host¢ system
through high-impedance probes attached directly to the com-
puter's circuitry.ul“r The signals can usually be passed
through logic patchboards to do logical ANDs, ORs, and so

on, enabling the analyst to obtain signals when certain

iF

' This assumes that users give all jobs unique identi-
fiers rather than using a few identifiers for all jobs. We
found that batch users at The Rand Corporation do the former.

*The host machine is the device being monitored.

TTFor some specific descriptions of commercially avail-
able units, see Refs. 9-13,.

-15-

arbitrary, complex relationships exist. The signals are
then fed to counters or timers. For example, an analyst
with a hardware monitor could determine (1) the portion of
CPU time spent performing supervisory functions while only
one channel is active, or (2) the number of times a channel
becomes active during a certain period.

Either the monitor or the host machine often contains
facilities for doing simple comparisons. This capability
is usually applied to address comparisons; the address of
the currently executing instruction is compared with two
bounds registers in the monitor to determine whether a
particular set of code is being executed. Because the
values in the bounds registers must be set manually, the
location of the desired code must be known. One hardware
monitor [14] includes sequence-testing circuitry to deter-
mine when certain sequences of instructions are executed.
In some cases, these monitors have been designed to examine
such specific operations as the incidence and type of jump
instructions [15]. Normally, however, sequence-recording
is beyond the monitor's capability.

Because hardware monitors can sense nearly any binary
signal, they can be used with a variety of operating sys-
tems, even with machines built by different manufacturers.
This characteristic can be important in an installation
with a variety of machine configurations. Of course, per-
sonnel must be familiar with each system measured, but a
new measurement tool is not needed for each case.

Hardware monitors are able to obtain accurate, high-
resolution data without affecting the host system in any

.T‘

way. They inject no artifact in the system and thus can

+"Artifact" is the perturbation in system performance
due to the presence of the measuring device. On occasion,
hardware monitors have been rumored to introduce an arti-
fact by loading computer circuits and slowing response.
Such instances are very difficult to verify.

-16~

be activated and deactivated without affecting processing
rates. On many such monitors, a relatively small number of
counter/timers are available (often 16) and only a small

number of probes can be used (often 20).T

As a result, only
a few items can be checked simultaneously. Because the lo-
cations of items in the core of a third-generation machine
are usually not known in advance, queue lengths cannot be
determined unless some programmable, relatively sophisti-
cated monitor is used. Similarly, it is usually not possi-
ble to measure a particular program's activity because the
monitor does not know the association between an action and

the activity-causing program.

Self-Monitoring

One manufacturer of specialized computers, Comcet, Inc.,
has integrated 256 probes into its hardware and software.
The probes collect data on usage and maintain 32 visual
displays for on-line use. These displays are up-dated 60
times/sec and the results recorded for possible subsequent
analysis every 5.2 sec. Data collection points include wait
state, worker state, interrupt state, storage activity,
channel activity, line activity, and various optional soft-
ware activities.

IBM has provided some hardware monitoring capability
on its 360/85 and 370/165 computers. Probes are available
to indicate CPU and channel activity, and certain logical
combinations are possible by operator-settable gwitches.
Output is primarily through a moderately damped meter, but
any one probe can be reached through a hub for external

monitoring.

%On some monitors, however, many more counter/timers
and probes can be used.

-17-

Monitoring With Another Computer

There has been interest in monitoring a host computer
with another computer (a very sophisticated hardware monitor).
UCLA's SNUPER computer work [16] falls in this category but
requires more extensive effort than usually available.

R. W. Murdy of IBM has reported on an associative memory*
device that monitors and concurrently reduces data on such
machines as the IBM 360/40 [17]}. However, this effort is
presently in the category of a research tool. 2An alter-
native to the large SNUPER computer monitoring technigue or
associative memory tools is a mini-computer with attached
probes and some standard software. On command from an
attached console, such a monitor could collect and process

specific data and output results.

Data Collection

Hardware monitors have their own clocks, which operate
independently of the interval timer on the host machine.
Timings on multiprocessors can become ambiguous because such
systems usually contain two or more timers, one for each CPU,.
The independent clock on the hardware monitor then becomes a
standard for measurement.’

Since hardware monitors operate independently of host
computers, system catastrophies do not terminate data col-
lection. As a result, when other techniques fail, the causes

of such unfortunate instances can be identified with hardware

+An associative memory has the capability of simul-
taneously comparing an input number with the contents of
all memory locations and returning the location of any word
with equal value. These devices tend to be very expensive.

*See p. 496 of Ref. 4 for a discussion of the utility of
independent timers. Since interval timers on many machines
have very low resolution (16.7 msec typically), they are of
limited value for such detail timings as the time to execute
a certain piece of code.

-18-~

monitors. Operator errors are particularly susceptible to
detection by hardware monitoring.

Collected data are of three types: time, utilization,
and counts. Measured times mav include either the total
time a certain condition exists or the elapsed time between

occurrences.

Full-Time Monitoring

Most commercially available monitors record everything
that happens within the limits of their resolution. These
devices monitor during the full time they are connected;
there are as many simultaneous paths as there are probes.
If connected to signals with pulse repetition frequency
greater than their maximum speed, these monitors behave in
undetermined ways. This seldom represents a real problem

since the maximum frequency is usually 1.0 to 1.3 MHz.

Sampling

Some hardware monitors sample, i.e., they only occa-
sionally examine the trueness of logical conditions. A
mini-computer monitor that uses this technique samples at
a relatively high rate (about 100 times/sec); therefore,
results over several minutes are highly representative of
the results that would be obtained with full-time monitor-
ing. Having sampling times determined independently of
the monitored machine avoids synchronization with internal
operations. The Comcet 60 (which samples functions at 80-
or 640-usec intervals with integrated hardware probes)
solves the synchronization problem by sampling based on a
second clock, independent of the clock used in the remainder

of the system.

Data Reduction

Present monitors often write results of counters and

timers on tape for subsequent processing. Writing to tape

~19-

often overlaps data collection, so dead time is only a few
microseconds instead of the unoverlapped time of 10 to 20
msec. Visual display is an alternative to tape output

often used in slower, lower-cost units.

Usage

Because hardware monitors are rather expensive, most
installations rent one for a few days. The real problem
is knowing what to do before the hardware box arrives. The
necessity for exhaustive test planning cannot be overempha-
sized; inadequate planning can result in a costly mess.
One strategy is to experiment with a unit for a week, then
plan to use it for another week after a month for planning
has elapsed. During this month, the analyst attempts to
understand results, improve exerciser programs that insure
correct monitor functioning, and generate a very specific
set of performance tests. This strategy causes personnel
to be very busy for two weeks collecting data in the hope
that data reduction will be reasonably well-defined. How-
ever, this procedure has some severe drawbacks since errors

in measuring cannot be corrected after the monitor is gone.

SOFTWARE MONITORS

Software monitors are often able to do things hardware
monitors cannot, but they also often have a large effect on
system perfcrmance and fail to measure some items accurately.
These monitors consist of code residing in the memory of the
host machine (at least for short periods); in some cases,
they may require as much as 20 percent of CPU capacity‘and
10 percent of I/O capacity. Because of this large effect,
software monitors are carefully designed in an attempt to

minimize their resource requirements.

-20-

Because software monitors reside in memory, they have
access to all tables that the system maintains. Therefore,
measurement of internal program operations is less diffi-
cult and the monitor can examine core usage, queue lengths,
individual program operation, and so on. Conceptually,
most states and processes that interest a programmer can
be measured if he is willing to pay for them in artifact.

Nevertheless, the answer to all problems is not merely
substituting a software monitor for a hardware monitor.
Because software monitors reside in core, they must coexist
with any other programs (e.g., control programs). This
places certain limitations on a monitor's design. The op-
erating system may mask+ interrupts that the monitor cannot
unmask without risking frequent system failures. Because
interrupts may be masked, completion of an I/O operation
may not be recorded until long after it occurs. In prac-
tice, this error is usually small, within one or two
percent.

The precision of measurements can be no greater than
that of the accessible timer in the host computer. This
often means that the maximum precision of measurements is
1/60 sec. This may be sufficiently precise, but higher-
resolution timers are often necessary and must be added to
a machine.

Software in the CPU does not have access to much infor-
mation about hardware activity at the other end of the chan-
nels. Timings on these activities are usually by inference
and make use of certain approximations. Hardware monitoring

must be used if very accurate measurements are needed.

+"Masking" in this case refers to a computer's ability
to ignore interrupts, either permanently or for a short
period. Various machines allow masking of specific types,
classes, or hierarchies of interrupts. Operating systems
often mask interrupts to perform sensitive operations; if a
software monitor unmasks, the operations can be interrupted,
which may cause system failure.

-22-

and data reduction can be partly done on-line. This tech-
nigue appears similar to a sophisticated hardware monitor,
but a significant difference exists: a hardware monitor
examines a system in its normal state; a semi-separate,
software monitor examines a system that has been degraded

so that one peripheral processor is unavailable.

Tracing

Tracing involves recording every time a certain class
of operations occurs; the events trigger the data collection.
In some cases, this "represents a complete timed record of
literally everything significant that . . . occurred.".r In
a 5-min run, this technique collected 350,000 trace entries
on tape when applied to the GECOS II operating system for
the GE 625/635. A far less extensive tracing is pursued by
AMAP, an IBM proprietary tracing program used on IBM System
350 hardware when operating OS/MVT [20]. in AMAP, I/O is
emphasized and each I/0 operation recorded. Other tracing
programs record far fewer data, with a consequent decrease
in artifact.

Tracing programs use internal interval timers; the
precision of the resulting data can be no greater than that
of the timer. A great deal happens in a system between two
consecutive timer increments; all the events are recorded as
occurring at one time. Therefore, a high-resolution timer
is valuable in generating traces.

Cantrell and Ellison note that their extensive trace
program represents a one-percent load on the system [21].
However, this low overhead may not compensate for tracing's
most severe drawback: the large space required for storing
output. The huge quantity of data requires that only a rel-
atively small period of operation be examined (typically,

1-See p- 214 of Ref. 2.

-21-

Accounting Systems

The most common software monitors are accounting-type
systems, which aggregate usage by task, job, or other unit
of user work. The primary objective of the accounting sys-
tem's designer is cost allocation, which sometimes compro-
mises the usefulness of accounting system data, particularly
where overhead is involved.

Accountancy may require that computer overhead costs
be borne by users who are charged directly for their demands
on the system. One way to do this without annoying users is
to include much of system overhead in usage charges. (Users
almost never know what their charges would be without over-
head, and this overhead is necessary for job execution.)
Unfortunately, the portion of total job time for overhead
can be in excess of 50 percent and the degree of overhead is
highly dependent on operations elsewhere in the system. One
study found that, on certain jobs, accounting times could be
in error by 220 percent due to allocations of overhead
time [18].

Although accounting data can be deceptive, analysts can
determine the actual charging methods used and perform anal-
yses based on a good understanding of potential errors. Ac-
counting data also have some distinct advantages. They are
usually quite complete because they are retained for histor-
ical purposes, and changes in collection methods are well

documented so that users can examine them for correctness,

Semi-Separate Monitor

On certain types of computers, a monitoring program can

be put in a peripheral processing unit and have very little

.'.

influence on the rest of the system. A large number of

accessible items can be examined whenever a change occurs,

TThis has been used on CDC 6000 series equipment [19].

23

2 to 30 min) in order to ensure that the limits of the re-
cording medium (usually tape) are not exceeded. The short
recording period and potentially large impact on a system's

operation impair the technique's potential usefulness.

Sampling

Many types of analysis do not require the very detailed
data obtainable from tracing but do need reasonably detailed
data obtained over a relatively long period. Accounting
data do not have the necessary detail, and tracing cannot be
efficiently performed over a long period. Sampling can often
be used in this situation.+

Such fields as accounting and management science have
long used random sampling for approximating the character-
istics of a population. Techniques are readily available to
predict the reliability of estimates made through unbiased
random sampling plans.* Such situations necessitate few
assumptions about the system under examination; the random-
ness used in picking the sample counteracts the effects of
cyclic behavior and gives each system state a chance of
being examined in proportion to its frequency and duration.

In computer monitoring, sampling is performed by in-
terrupting the CPU at regular intervals so that the sampling
program can examine the system. Special software in the
computer responds to interrupts by storing in registers or
core all values that are important to the program in control
at the time of the interrupt. Since this interrupt-handler
software stores all important values in well-defined loca-

tions,; the sampling program can examine these data. If the

TCommercially available sets of sampling tools for IBM
System 360 equipment are available (see Refs. 12, 22, and
p. 9 of 23 for some examples). Another set of sampling tools
has been developed at the Stanford Linear Accelerator Cen-
ter (SLAC) [3].

*Seey for example, pp. 212ff of Ref. 24 and pp. 744ff
of Ref. 25.

-24-

CPU is idle when interrupted by the sampling program, the
interrupt handler will have data stored indicating CPU
idleness. The sampling program can usually determine which
code was being executed prior to the interrupt. It can also
determine the status of channels, controllers, and devices
(and the cause for that status), as well as other information
of interest to analysts.

In conventional industrial sampling, randomness (essen-
tially, the inability to predict states) is ensured by
randomly picking the examination times. Because the time
between examinations usually includes only a few changes of
state, randomness can only be ensured in this way. In com-
puter sampling, the intervals between samples are long rela-
tive to the speed of CPU operations (usually on the order
of 17,000 to 1 or 2 usec); the system is assumed to have
dramatically and unpredictably changed states between sam-
ples. Therefore, in computer sampling, randomness is ob-
tained through the large and unknown number of changes of
state between samples rather than through random timing of
examinations. Instances where this would have totally un-
representative results can be easily imagined but appear
highly unlikely in typical systems.

The durations of I/0 device operations (disk seeks,
tape reads, printing a buffer, etc.) are usually signifi-
cantly longer than the time between samples. The monitor
examines CPU status and the status of these devices. Exam-
ination of I/0 equipment is more complex than the random
sampling of CPU-related items. During an operation, all
examinations find the device busy. At the beginning and
end of an operation, a sample may find the device either
busy or idle, depending randomly both on the precise time
the CPU makes an I/0 request and the time required to per-
form the operation. If I/O operation times were a constant
value or I/0 requests were made at particular times rela-

tive to the time of sample interrupts, randomness would not

-25-

be present. However, these conditions clearly do not seem
to hold;+ we can thus safely assume random sampling.

Sampling techniques enable the systems analyst to col-
lect representative data over an extended period with re-
duced artifact and small resource expenditure for data
reduction. Sampled data, sometimes combined with trace
data,$ often adequately fulfill most of the data require-
ments of systems analysts.

Special Programs

Various installations have implemented a variety of
programs to examine special problems. One of the most
common application areas is real-time and on-line systems.
To be viable, most of these systems must be special-purpose;
therefore, special monitoring techniques must be employed
to obtain data.

For example, American Air Lines' SABRE system has a
series of monitoring programs integrated in its code to
collect utilization and response time values. The programs
are activated at an on-line terminal. Most large systems
have at least one special monitor of this type, but these

are seldom documented.

TI/O equipment has mechanical components that have non-
constant times for identical requests. In multiprogramming
systems, I/0 requests tend to be random because jobs switch
control, disrupting the sequence for any particular job.

*The monitor developed at SLAC uses both sampling and
tracing. Most system functions are sampled, but important
activities occurring while the system is masked are traced.
All I/O operations are traced to identify their type and
all supervisor calls are traced to identify the routine
called and any user module that may be brought in. Measure-
ments made with a sampling software monitor and a full trace
hardware monitor on a 360/65 operating O0S/MVT illustrate the
importance of this masking. The sampling monitor indicated
that the 360°'s CPU was in supervisor state 10 percent of the
total time whereas the hardware monitor showed 25 percent.
The two monitors indicated similar total CPU utilization,

56 and 57 percent.

-26-

CATEGORIZING MONITORS

Different groups of people design and implement hard-
ware and software monitors. This difference in personnel
is probably the main reason for the emphasis on distin-
guishing between hardware and software. However, this
distinction is only one of the major tool characteristics.
This section discussed a number of specific measurement
tools; we now summarize a framework for categorizing both
currently available and as yet unimplemented techniques,f

The tools fall into five binary categories: imple-
mentation medium, separability, sample portion, analysis

concurrency, and data presentation technique (see Table 1).

Table 1
BASIC TOOL CATEGORIES

Category Characteristics
Implementation medium Hardware
Software
Separability Integrated
Separated
Sample portion Full-time monitoring
Sampling
Analysis concurrency Concurrent analysis

Recorded data

Data presentation Static statistic
Time-related

The "implementation medium" is either hardware or

software; both are well understood.

+This framework modifies and extends one proposed by
Kenneth Kolence [26]. Kolence's categorization includes
a distinction between passive and active monitoring.

-27~

The "separability" characteristic, either integrated
or separated, is often ignored because only separate mon-
itors are usually considered. However, integrated account-
ing systems are standard and integrated hardware monitors
are occasionally available. Many system operations, par-
ticularly software ones, can be most effectively monitored
with integrated tools; these should be integrated during
system design. For example, American Airlines' SABRE sys-
tem included integrated software tools in the design shortly
after the effort began. Monitors integrated after design
completion tend to require excessive overhead and cannot aid
the designers in producing a better system.

The "sample portion" indicates what portion of data is
sampled. Full-time monitoring (tracing) considers each
operation in a certain class (for example, all I/0 inter-
rupts or all times when a channel is busy). Sampling mon-
itors are those in which the sample portion is less than
100 percent of the operations of the monitored system.

Collected data are either analyzed on-line or recorded
for later analysis. "Analysis concurrency" can therefore
be either concurrent or nonconcurrent with data collection.
Accounting systems, for example, typically analyze data on-
line and record results at the end of a job. On the other
hand, hardware monitors often record raw data on tape for
later analysis.

Common practice in the industry is to provide some data
presentation tools along with commercially available data
collection tools. The "data presentation” technique becomes
associated with the data collection tool. Many techniques
are in use, but the manner of summarizing the data is crit-
ically important for many types of analysis. Data presen-
tation tends to fall into two categories: (1) static
statistics (means and counts are most common), and (2) time-
related displays (e.g., histograms of usage over time).

Data collection tools with very rudimentary presentation

-28-

tools (e.g., most accounting systems) fall, by default,
into the category of static statistics (mainly raw data).
Five binary categories were described; therefore,
five binary digits can describe any of the data collection
tools. Table 2 illustrates this for several tcols. The
analyst choosing a monitoring tool can use this description
technique to pick the characteristics desired and then find

or design the needed tool.

Table 2
DESCRIPTIONS OF TOOLS

Typical Mini- Comcet,
Typical Hardware | Computer | 360/85 a

Characteristic Accounting | Monitor Monitor 370/165 | SUPERMON

Hardware 0 1 0 0 0 1
Software 1

Integrated 0 0 1 1 0 1
Separated 1

Full-time Monitoring O 0 0 1 0 0,1
Sampling 1

Concurrent Analysis ¢} 0 1 0 0 0
Recorded Data 1

Static Statistics 0 0 0,1 0 0 0
Time-related 1

3SUPERMON is described by its indicated characteristics and is for
examining IBM 360 systems (see Ref. 3).

-20~

Iv. BEYOND TOOLS: A CAVEAT

This report discussed some of the reasons for perfor-
mance analysis and the tools for measuring performance.

The decision to do performance analysis is certainly an
important one, and the effort is futile without appropriate
measurement tools. The implication may be that deciding

to analyze performance and choosing tools constitute the
bulk of the effort in this area. This implication is
inaccurate, and poor analyses result when it is implicitly
accepted as true. An analyst may decide measurement and
analysis are important, choose a tool, collect some data,
and then attempt immediate conclusions. Procedurally, there
are more effective ways to go about performance analysis.+

Many important issues remain outside the scoperf this
report. For example, simply measuring--collecting a set of
random values--is almost always a waste of time. Consider-
able preliminary work must go into developing performance
models and testable hypotheses. This effort turns an amor-
phous "feeling" into a test to distinguish between fact and
imagination.

Testing can be done either by monitoring normal per-
formance or by running a controlled experiment [27]. Mon-
itoring has the advantage of relevance to the situation but
the disadvantage of spurious effects combining with the
variables under study. Controlled experiments are seldom
run except in the case of benchmarking to compare several
systems or to track performance over time. A series of
well-defined tests can yield data to test an impressive set
of hypotheses, but the hypotheses may be irrelevant if nor-

mal performance is not also carefully monitored.

+See Ref. 1 for procedural suggestions on simulating
performance in systems under development.

-30-

Designing controlled experiments and monitoring situa-
tions is always critically important. Because unanticipated
variables always appear, experimental design is a continuing
problem. In one series of controlled experiments at Rand,
we found problems in benchmark jobs, difficulty in control-
ling variables, and an inherent variability in the measured
process. Because we anticipated problems, we were able to
learn from early runs and actually use much of the data.

The final experimental design allowed us to analyze the data
in a variety of ways so that some models hypothesized after
the runs could be checked and discarded.

Raw data must be transformed into answers about hypoth-
eses. A large body of general data analysis techniques
exist that can be applied to analyzing performance data.
These techniques must be specialized in order to test hy-
potheses about computer performance; over-simplified tech-
nigues are usually employed. A simple numerical comparison
of two values of unknown reliability and relevance is often
used to make major decisions. More sophisticated and reli-
able techniques are commonly known and applied in other
fields; they should also be used in computer performance
analysis.

Each of these four topics--modeling, data collection
mode, experimental design, and data analysis--is probably
more difficult and important than choosing data collection
tools. The variety of available tools discussed in this
report should indicate that good data collection does not
dominate other problems. Devoting adequate effort to each
of the five topics can appreciably increase the probability
that computer performance analysis will achieve its ob-

jectives.

10.

11.

12,

13.

14.

15.

-31-

REFERENCES

Bell, T. E., Modeling the Video Graphics System: Pro-
cedure and Model Description, The Rand Corporation,
R-519-PR, December 1970.

Bemer, R. W., and A. L. Ellison, "Software Instrumenta-
tion Systems for Optimum Performance," Proc. IFIP
Congress 1968, pp. 39-42.

Johnston, T. Y., "Hardware Versus Software Monitors,"
Proe. of SHARE XXXIV, Vol. I, March 1970, pp. 523-547.

Saltzer, J. H., and J. W. Gintell, "The Instrumentation
of Multics," Comm. of ACM, Vol. 13, No. 8, August
1970, pp. 495-500.

Wiener, J., and T. DeMarco, "The Systems Scene: Tuning
for Performance," Modern Data, January 1970, p. 54.

Denning, P. J., "Thrashing: Its Causes and Prevention,”
Proc. AFIPS 1968 Fall Joint Computer Conference, Vol.
33, pp. 915-922.

Randell, B., "A Note on Storage Fragmentation and Pro-
gram Segmentation," Comm. of the ACM, Vol. 12, No. 7,
July 1969, pp. 365-369.

Blau, P. M., The Dynamics of Bureaucracy, The University
of Chicago Press, Chicago, 1955.)

IBM Systems Measurement Instrument Service, Inter-
national Business Machines Corp., Data Processing A
Division, G520-2295, White Plains, New York [Brochure].

System Utilization Report, Computer Synectics, Inc.,
Santa Clara, California [Brochure].

CPM II Computer Performance Monitor, Allied Computer
Technology, Inc., Heuristic Systems Division, Santa
Monica, California [Brochure].

X-RAY Computer Performance Measurement System, Applied
Systems Division, Computer Learning and Systems Corp.,
Chevy Chase, Maryland [Brochurel.

Series 7700 Computer Performance Analyzer, Computer
and Programming Analysis, Inc., Chevy Hill, New Jersey
[Brochure].

Schulman, F. D., "Hardware Measurement Device for IBM
System/360 Time Sharing Evaluation," Proec. ACM 22nd
National Conference, 1967, pp. 103-109.

Rock, D, J., and W. C. Emerson, "A Hardware Instrumenta-
tion Approach to Evaluation of a Large Scale System,"
Proc. of the 24th National Conference (ACM), 1969,
pp. 351-367.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

-32-

Estrin, G., D. Hopkins, B. Coggan, and S. D. Crocker,
"SNUPER Computer: A Computer in Instrumentation
Automaton," Proec. AFIPS 1967 Spring Joint Computer
Conference, pp. 645-656.

Murphy, R. W., "The System Logic and Usage Recorder,"”
Proc. AFIPS 1969 Fall Joint Computer Conference,
pp. 219-229.

zunich, L. H., "Study of 0S 360 MVT System's CPU Tim-
ing," SHARE Computer Measurement and Evaluation News-
letter, No. 3, February 7, 1970.

Stevens, D. F., "On Overcoming High-Priority Paralysis
in Multiprogramming Systems: A Case History," Comm.
of ACM, Vol. 11, No. 8, August 1968, pp. 539-541.

Advanced Multiprogramming Analysis Procedure (AMAP)
Service Description Manual, International Business
Machines Corp., Data Processing Division, GH20-0725,
White Plains, New York [Brochurel.

Cantrell, H. N., and A. L. Ellison, "Multiprogramming
System Performance Measurement and Analysis," Proec.
of the 1968 Spring Joint Computer Conference, PPp.
213-221.

A Guide to Program Improvement with LEAP, Lambda
LEAP Office, Arlington, Virginia [Brochurel.

Systems Measurement Software (SMS/360) Configuration
Utilization Efficiency (CUE) Product Description,
Boole and Babbage, Inc., Palo Alto, California
[Brochure].

Kurnow, E., G. J. Glasser, and F. R. Ottman, Statistics
for Business Decision, Richard D. Irwin, Homewood,
Illinois, 1959, pp. 212ff.

Buffa, E. S., Modern Production Management, John Wiley
& Sons, Inc., New York, 1965, pp. 744ff,

Kolence, K. W., "Systems Measurement--Theory and Prac-
tice," Proe. of SHARE XXXIV, Vol. 1, March 1970, pp.
510-521.

Karush, A. D., Two Approaches for Measuring the Per-
formance of Time-Sharing Systems, System Development
Corporation, SP-3364, Santa Monica, California, May
1969.

