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 A Detail in Kronecker's Program
 BY

 E. T. BELL

 THE PROGRAM

 _ T WAS Kronecker who sought to avoid the use in
 mathematics of all numbers (negatives, fractions,

 irrationals) other than the positive integers,
 and he outlined the means for carrying through
 this program.l In the introductory sections

 of his memoir he briefly indicates the personal
 philosophy which made such a project appear desirable.
 It does not seem surprising that Kronecker's program has

 inspired controversies and created its own opposition. The
 program itself has been called bizarre, impracticable, and idle
 even if it were possible of achievement. The general sentiment
 on the hostile side has been briefly summed up as follows by
 Hobson.2

 "His [Kronecker's] ideal is that every theorem in analysis shall
 be stated as a relation between integral numbers only, the ter-
 minology involved in the use of negative, fractional, and irra-
 tional numbers, being entirely removed. This ideal, if it were
 possible to attain it, would amount to a reversal of the actual
 historical course which the science has pursued; for all actual
 progress has depended upon successive generalizations of the
 notion of number, although these generalizations are now re-
 garded as ultimately dependent on the whole number for their

 1 L. Kronecker, Uber den Zahlbegriff, Yournalfiir die reine und angewandte Mathematik
 vol. IoI (I887) pp. 251-280; Werke, vol. III I, pp. 251-280.

 2 E. W. Hobson, the lTheory of Functions of a Real Variable, etc., (I907) Art. 17.

 197
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 I98  Kronecker's Program
 foundation. The abandonment of the inestimable advantages
 of the formal use in Analysis of the extensions of the notion of
 number could only be characterized as a species of Mathematical
 Nihilism."

 The doubt whether it is possible to attain Kronecker's ideal
 has recently been repeated.3 4 It must be remembered, however,
 that Kronecker wrote his sketch at a time when it was not

 customary, as it is now, to state carefully the postulates upon
 which a particular mathematical theory is based before proceed-
 ing to the construction of the theory. Further, parts of his
 exposition are quite concise and might easily be misinterpreted by
 a reader as antipathetic to Kronecker's program as Couturat was.
 Couturat let himself go; he attacked the program with gusto and
 damned it in general and in detail. Some of his objections are
 easily seen to be based on a simple misunderstanding of parts of
 Kronecker's elementary algebra. This applies in particular
 to some of the strictures on Kronecker's theory of negatives, and
 a similar oversight occurs in connection with objections to the
 treatment of irrationals and fractions.

 Although it may be presumptious to attempt to convince
 anyone temperamentally opposed to Kronecker's program that
 it is not the bizarre futility it is sometimes said to be, nevertheless
 it may be recalled that some of the techniques outlined or used
 by Kronecker in his memoir and in its companion on algebraic
 "magnitudes" have had, and still have, wide application in
 theory of algebraic numbers, the theory of algebraic functions
 and the theory of modular systems, all of which are severely
 technical mathematical disciplines untainted by speculative im-
 practicality or mathematical nihilism. In short, Kronecker's
 mathematics in his sketch of the program, as mathematics, needs
 no defense. Nor is it necessarily true that the historical de-
 velopment of the number system is the best for a modern presen-
 tation. The historical development is, in fact, not followed: we

 3A. C. Black, T'he Nature of Mathematics (I933), p. I77. Black refers "for a full
 discussion and criticism of Kronecker's views" to

 4 L. Couturat, De l'Infini Mathematique, (1896), pp. 603-616. This book had a wide
 circulation a generation ago.

This content downloaded from 131.215.251.156 on Tue, 24 Mar 2020 22:49:04 UTC
All use subject to https://about.jstor.org/terms



 E. T. Bell '99
 do not torture ourselves as the ancients vainly did to produce a
 civilized theory of common fractions; we do not repeat, even in the
 elementary schools, the endless arguments which the early
 algebraists found necessary before they would admit negative
 numbers to a parity with the positives; nor do we trouble our souls
 with profound doubts about "sophistical quantities" when some
 equation incontinently presents us with an imaginary root. To
 attack Kronecker's program on the ground that it is unhistorical
 is to render aid and comfort to the enemy.
 Before going on to the simple detail in connection with negative

 numbers, we recall that Cauchy5 originated the device of algebraic
 congruences as an alternative, "real," way of handling complex
 numbers. This device is that which Kronecker extends and

 exploits to the limit to give him the algoristic half of his theory.
 The other, less tangible, half concerns Kronecker's theory of
 adjunction and is much harder to justify to a hostile critic of the
 program and to clear once and for all of the charge of circularity.
 The historical origin of the abstract principles behind the theory
 of adjunction can be traced, I believe, to Kummer, who was one
 of Kronecker's teachers. Kronecker's specific application of the
 principles is entirely his own.

 NEGATIVE NUMBERS

 The theory is based on the concept of what is now called a
 semi-field. It will be sufficient to define the terms used, state
 the postulates, and give only enough of the theorems deduced
 from the postulates to dispose of one objection which has been
 raised against Kronecker's algorithms. The proofs of the theo-
 rems are almost immediate from the definitions and postulates.
 What follows is an abstract of the first part of a paper by Wedder-
 burn.6 The postulates for equality, =, are presupposed.

 5A. L. Cauchy, Exercises d'Analyse et de Physique Mathematique, Tome 4, (1847),
 pp. 87-IIO. One remark of Cauchy's is rather amusing, coming as it does from the
 inventor of the theory of functions of a complex variable:

 "In the theory of algebraic equivalences [congruences] substituted for the theory of
 imaginaries, the letter i will cease to represent the symbolic sign /-i, which we repudiate
 completely, and which we can abandon without regret, because nobody knows what this
 sham sign signifies, nor what meaning is to be attributed to it."

 6 J. H. M. Wedderburn, Algebraic Fields, Annals of Mathematics, Second Series, vol. 24
 (1923), pp. 236-264.
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 200  Kronecker's Program
 Let D denote a set of elements (or "marks") a, b, c, . . ., finite

 or infinite in number, which satisfy the following postulates.
 P. If a, b are any elements of D, not necessarily distinct, there

 exist two single-valued functions of a, b, denoted by a + b and
 a X b respectively, and these functions have the following properties.

 A1. a + b is an element of D.
 A2. a + b = b + a.
 A3. a + (b + c) = (a + b) + c.
 A4. If a + b = a + c, then b = c.
 A5. There is an element o such that o + o = o.
 M1. a X b is an element of D.
 M2. a Xb = b X a.

 M3. a X (b X c) = (a X b) X c.
 M4. If a X b = a X c, but a + b # b, then b = c.
 Ms. There is an element i 7 o such that I X I = I.

 AM1. (a + b) X c = a X c + b X c.
 AM'i. c X (a +b) = c Xa +c X b.
 AM2. If a X c + b X d = a X d + b X c, and a # b, then

 c = d.

 The "o" in A5 might be denoted by z, and the "I" in M5 by u,
 to emphasize that these are not necessarily the zero and unity of
 common arithmetic. But as there can be no confusion, we let
 o, i stand as they are.

 A set D satisfying these postulates is called a semi-field (because
 the inverses of +, X, which would give subtraction and division,
 as in a field, are not postulated). Note that the elements a, b, c,
 ... of D are any marks satisfying the postulates. The point of
 departure is thus set farther back than Kronecker's, in which
 the positive integers are taken as the starting point. This (as
 Wedderburn remarks) is merely a matter of convenience for what
 is to follow. It is evident that an instance of a semi-field is ob-

 tained from D when we take as the elements the positive in-
 tegers and zero, and for +, X the plus, times of common arith-
 metic. To prevent a possible misunderstanding, the +, X of
 the postulates might be enclosed in circles, as is sometimes done,
 but this is unnecessary.
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 E. T. Bell 201

 The argument will be clearer if we state first what is to be done,
 following Cauchy and therefore also Kronecker. What imme-
 diately follows is merely descriptive. Assuming, known say, the
 real numbers, we can classify all the polynomials with real
 coefficients in the real variable i by means of the "division trans-
 formation" with respect to a given polynomial, say i2 + I, as
 follows. Dividing the polynomialf(i) by i2 + I we get a quotient
 q(i) and a remainder r(i), both of which are polynomials with
 real coefficients, and the degree of r(i) is less than that of the
 divisor. Thus, when the divisor is i2 + I, we can expressf(i)
 in the form

 f(i) = q(i) (i2 + ) + ai + b,

 where a, b are real. Different polynomials may give the same
 remainder. All those polynomials which give the same remainder
 ai + b are defined to belong in the same class. A particular class
 contains one and only one remainder, say ai + b. Hence this
 class, being completely specified by the unique remainder ai + b,
 may be denoted by {ai + b}, and ai + b may be taken as the
 representative of the class. Any two polynomials belonging to a
 given class are said to be congruent with respect to the divisor as a
 modulus, or congruent mod the divisor. Here, two polynomials
 f(i), g(i) in the class {ai + b} are congruent mod i2 + i, and this
 is written

 f(i) g(i) mod i2 + I,

 which is merely an expression of the fact thatf(i) and g(i), when
 divided by i2 + I give the same remainder ai + b. We need
 not go into the excellent reasons for adopting this seemingly
 involved manner of stating an elementary fact; it is sufficient to
 emphasize here that the remainders ai + b and the corresponding
 classes {ai+ b} are the important things for our present purpose.
 If the divisor is any polynomial with real coefficients, the pro-
 cedure is the same.

 Suppose, however, that we are not operating with polynomials
 whose coefficients are any real numbers (positive, negative,
 fractional), but have restricted ourselves to polynomialswhose
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 202  Kronecker's Program
 coefficients are elements of the set o, I, 2, 3, ... of common
 arithmetic. Then it is easily seen that, in theform of the division
 transformation furnished by common division, as in elementary
 algebra, the preceding classification breaks down. For there will be
 remainders in which the coefficients are negative orfractional, and
 neither the negatives nor the fractions are included in the set
 o, I, 2, 3, ... For example, dividing x2 + 2x by x2 + i we get

 x2 + 2X = I (X2 + I) + 2X - I;

 the remainder is 2x - I, and we might be tempted to say that
 x2 + 2X belongs to the class {2x - I}. But as we have now
 restricted ourselves to zero and the positive integers i, 2, 3, ...,
 the symbol -I in 2X - I has no meaning, and {2x - I} does
 not denote a class, but is entirely meaningless.

 We have elaborated this because it is an example of the type of
 objection to Kronecker's algorithms which is based upon a simple
 misunderstanding of his elementary algebra. This is the kind
 of objection with which we are concerned here. To be specific,
 I shall quote (in translation) exactly what Couturat says (loc.
 cit. p. 613) in part with regard to Kronecker's project for avoiding
 the negatives, -I, -2, -3, . ..

 "The congruence 7 + 9x 3 + 5x mod x + I states that the
 remainders of the two members, divided separately by the modu-
 lus, are equal. Now if we divide each of the binomials (7 + 9x)
 and (3 -+ x) by (x + I), we get in each case the remainder -2,
 that is to say, the negative number which would result from the
 subtractions, impossible by hypothesis."

 Here it is a question of avoiding the negatives, and Couturat is
 pointing out that if we go through the elementary algebra of
 dividing as demanded by the congruence, then we get the nega-
 tive -2, which is forbidden, negatives being, by hypothesis,
 meaningless when the set of permissible coefficients is restricted
 to be o, I, 2, 3, ... He gives further examples to emphasize his
 point. If Kronecker's algorithm did anything of this sort, the
 objection would be well taken. But the algorithm was carefully
 constructed so as to avoid this and similar pitfalls. It is clear
 that if we postulate only a semi-field as the domain of the coeffi-
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 E. T. Bell 203
 cients, neither subtraction nor division of coefficients as in com-
 mon algebra is permitted, as subtraction and division are un-
 defined for a semi-field. Hence it must be shown that the

 division transformation can be constructed in a semi-field.
 Continuing with Wedderburn's paper, we abstract enough of his
 theorems to reach the correct form of the division transformation

 for a semi-field.
 A polynomialf(x) is said to be in the semi-field D if its coeffi-

 cients are elements of D. Instead of "element of D" we shall say
 "element"; o, I are as in the postulates As, M5.

 DEFINITION. Any element z such that a + z = a for every
 a (in D) is called a null element.

 THEOREM I. O is the only null element in D.
 THEOREM 2. a X I = a.

 DEFINITION. An element x such that a X u = a for every
 element of D which is not a null element is called an identity
 element.

 THEOREM 3. I is the only identity element in D.
 THEOREM 4. If a is any element, then a X o = o.
 Let x denote any element. Then, if n denotes a positive

 integer, xn is uniquely defined, by M2, M3.
 DEFINITION. A polynomial in x is the sum of a finite number

 of elements and a finite number of terms of the form ai xni
 where ai (i = I, 2, .. .) are given elements and x is a variable
 element and ni (i = I, 2, . . .) are positive integers.

 We shall say that the polynomial is in D. Since (a + b)x =
 axm + bxm, for any elements a, b, x and any positive integer m,
 it follows that any polynomial in x in D can be expressed in the
 form aoxn + aox"-l + . . . + a-, where n is a positive integer and
 ai are elements of D. If the degree of the polynomial is one, the
 polynomial is called linear.

 The next definition is of importance in reaching the correct form
 of the division transformation.

 DEFINITION. Two polynomials in D in the same variable x
 are said to be identically equal if, and only if, they have the same
 value for every value of x in D. The sign for "identically equal"
 is _o
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 204  Kronecker's Program
 THEOREM 5. If two linear polynomials in D are identically

 equal, corresponding coefficients are equal.
 That is, if ax + b and cx + d are in D and are identically

 equal, then a = c and b = d.
 THEOREM 6. Iff(X) is any polynomial in x in D, then there

 exist two polynomials p(x), q(x) in x in D, and a linear polynomial
 ax + b in D such that

 f(x) + p(x) (x + I) _ ax + b + q(x) (x + I).

 It is this theorem which, in the semi-field D, replaces the "di-
 vision transformation" of common algebra when the divisor is
 x + I. The "divisor" x + I is that appropriate for Kronecker's
 theory of negatives; x2 + I is the "divisor" for Cauchy's and
 Kronecker's theory of complex numbers, and so on; for every
 "divisor" which it is necessary to discuss in Kronecker's theory
 there is an appropriate theorem replacing the corresponding
 "division transformation" of common algebra, and each such
 theorem is the expression of an identity, corresponding to that
 concerningf(x) in THEOREM 6. The important point to be noted
 in this particular case is that on each side of the sign - of identical
 equality in the theorem there is a polynomial which is in D. We
 have not passed out of the semi-field Dfrom which we started.

 DEFINITION. When, as in THEOREM 6,

 f(x) + p(x) (x + I) _ ax + b + q(x) (x + I),

 we say thatf(x) is congruent to ax + b with respect to the modulus
 x + I, and we write7

 f(x) -ax + b mod x + I

 The identical equality and the congruence express the same
 fact. Namely, if we assert the congruence, we might, if we
 wished, replace the congruence by the following assertion: "There
 exist polynomials p(x) and q(x) in x in D such that

 f(x) + p(x) (x + I) - ax + b + q(x) (x + I)."
 7 The sign - of identical equality in the first formula is not in danger of confusion with

 the same sign in the second formula, for in the latter _ is part of the compound sign
 "-( ... mod" of congruence. The "mod" indicates that congruence, not identical equality
 is meant.

This content downloaded from 131.215.251.156 on Tue, 24 Mar 2020 22:49:04 UTC
All use subject to https://about.jstor.org/terms



 E. T. Bell 205
 The precise forms of the p(x), q(x) corresponding to a particular
 f(x) are of no importance for our purpose.
 COROLLARY (to THEOREM 6). If the polynomials f(x), g(x) in

 x in D are such that

 f(x) ax + b mod x + I

 and

 g(x) ax + b mod x + I,

 (where ax + b is in D), then there exist polynomials P(x), ,((x), in x
 in D such that

 f(x) + P(x) (x + i) g(x) + (x) (x +).

 The next definitions and immediate consequences of THEOREM
 6 and the COROLLARY provide the basis for separating the totality
 of polynomials in x in D into classes.

 DEFINITION. Polynomials in x in D which are congruent to
 the same linear polynomial in x in D with respect to the modulus
 x + i are said to be congruent to each other modulo x + I.

 From the definition of congruence, it follows that if

 f(x) _ g(x) mod x + I,
 and

 g(x) h(x) mod x + I,
 then

 f(x) _ h(x) mod x + I.

 DEFINITION. The set of all polynomials in x in D which are
 congruent to the same polynomialf(x) in x in D modulo x + I
 constitute the residue class, or simply class, denoted by [f(x)],
 corresponding tof(x).

 DEFINITION. Two classes [f(x)], [g(x)] are equal if, and only
 if, any polynomial in x in D which is a member of [f(x)] is also a
 member of [g(x)], and every member of [g(x)] is a member of
 [f(X) ].

 By THEOREM 6, every class contains a polynomial of the form
 ax + b, which may be taken as the representative of the class.
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 206  Kronecker's Program
 THEOREM 7. The classes [f(x)] and [g(x)] are equal if, and

 only if,f(x) =- g(x) mod x + I.
 DEFINITIONS. o,I being as in As, Ms, the class [o] is called

 the zero class, and the class [I] the identity class. The sum of
 the classes [f(x)] and [g(x)] is the class [f(x) + g(x)], and is
 denoted by8 [f(x)] + [g(x) ]; the product of [f(x)] and [g(x)] is the
 class [f(x)g(x)], and is denoted by [f(x)] X [g(x)]. With these
 definitions we have

 THEOREM 8. The set, denoted by K, of all classes of polynomials
 in x in Dforms a semi-field.

 The elements in K are the classes; the +, X are the operations
 just defined in connection with clases, and the o,I are [o], [I].
 The proof of this theorem is somewhat detailed; see Wedderburn,
 loc cit. pp. 247-249.

 THEOREM 9. If a is any element of K there exists a unique
 element P of K such that a + t = [o].

 We have just seen in THEOREM 8 that K is a semi-field. Hence,
 in particular, the elements (residue-classes mod x + I) of K
 satisfy the postulates A1 to A5 for addition in a semi-field. Sup-
 pose now that we write THEOREM 9 after As, as is legitimate, since
 it has been deduced from the postulates for D, and merely re-label
 it A6. Then A1 to A6, with K, a, ,3, ', ..., [o], [I], in place of
 D, a, b, c, ..., o, i are identical with the postulates for "addition"
 in afield (not merely a semi-field), in which subtraction, as under-
 stood in arithmetic and common algebra, is uniquely possible.9
 The element 3 in THEOREM 9, merely to give it a name, may be
 called the "negative" of a in K. Thus every element a in K has
 a unique negative, which may be denoted by - a, merely as a
 matter of writing. We have not committed the solecism of
 "solving" a + / = [o] for f and getting fa = [o], - a, = - a;
 all we have done is to give d a new name and a new symbol,
 - a - /, to indicate that it is the particular /prescribed by THEO-
 REM 9 when a is given.

 8The "+"in [f(x)] + [g(x)] refers to addition of classes, as defined; the "+" in
 [f(x) + g(x)] refers to addition in the semi-field D. Similarly for x.

 9 For the postulates of a field see L. E. Dickson, Algebras and their Arithmetics, p. 201,
 or the papers by Dickson or E. V. Huntington in l'ransactions of the American Mathemati-
 cal Society, vol. 4 (I903) pp. 13-20, vol. 6 (I905) pp. 181-204.
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 E. T. Bell 207
 It has been shown, therefore, that from any semi-field D a new

 set can be constructed in which "subtraction," and "negatives,"
 having the properties of subtraction and negatives in common
 algebra or arithmetic, can always be constructed. The like follows
 for "division" and "reciprocals." Hence, from a semi-field, in
 which neither "subtraction" nor "division" is defined, we can
 construct a field. This is what was to be done.10

 California Institute of 'echnology.

 10 Since this note was written, a paper by H. S. Vandiver has appeared (Proceedings
 of the National Academy of Sciences, vol. 20, November 1934, pp. 579-584) bearing partly
 on Kronecker's program. It would be of considerable historical interest to know the
 exact date of Schatunovsky's first work on objections to the unrestricted use of the
 law of excluded middle, as some of his examples are even more illuminating than some of
 Brouwer's.
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