For a system composed of two particles Bell's theorem asserts that averages
of physical quantities determined from local variables must conform to a family
of inequalities. In this work we show that a classical model containing a local
probabilistic interaction in the measurement process can lead to a violation of
the Bell inequalities. We first introduce two-particle phase-space
distributions in classical mechanics constructed to be the analogs of quantum
mechanical angular momentum eigenstates. These distributions are then employed
in four schemes characterized by different types of detectors measuring the
angular momenta. When the model includes an interaction between the detector
and the measured particle leading to ensemble dependencies, the relevant Bell
inequalities are violated if total angular momentum is required to be
conserved. The violation is explained by identifying assumptions made in the
derivation of Bell's theorem that are not fulfilled by the model. These
assumptions will be argued to be too restrictive to see in the violation of the
Bell inequalities a faithful signature of nonlocality.Comment: Extended manuscript. Significant change