6,081 research outputs found
Fundamental Speed Limits on Quantum Coherence and Correlation Decay
The study and control of coherence in quantum systems is one of the most
exciting recent developments in physics. Quantum coherence plays a crucial role
in emerging quantum technologies as well as fundamental experiments. A major
obstacle to the utilization of quantum effects is decoherence, primarily in the
form of dephasing that destroys quantum coherence, and leads to effective
classical behaviour. We show that there are universal relationships governing
dephasing, which constrain the relative rates at which quantum correlations can
disappear. These effectively lead to speed limits which become especially
important in multi-partite systems
The power spectrum of the circular noise
The circular noise is important in connection to Mach's principle, and also
as a possible probe of the Unruh effect. In this letter the power spectrum of
the detector following the Trocheries-Takeno motion in the Minkowski vacuum is
analytically obtained in the form of an infinite series. A mean distribution
function and corresponding energy density are obtained for this particular
detected noise. The analogous of a non constant temperature distribution is
obtained. And in the end, a brief discussion about the equilibrium
configuration is given.Comment: accepted for publication in GR
The U-band Galaxy Luminosity Function of Nearby Clusters
Despite the great potential of the U-band galaxy luminosity function (GLF) to
constrain the history of star formation in clusters, to clarify the question of
variations of the GLF across filter bands, to provide a baseline for
comparisons to high-redshift studies of the cluster GLF, and to estimate the
contribution of bound systems of galaxies to the extragalactic near-UV
background, determinations have so far been hampered by the generally low
efficiency of detectors in the U-band and by the difficulty of constructing
both deep and wide surveys. In this paper, we present U-band GLFs of three
nearby, rich clusters to a limit of M_U=-17.5 (M*_U+2). Our analysis is based
on a combination of separate spectroscopic and R-band and U-band photometric
surveys. For this purpose, we have developed a new maximum-likelihood algorithm
for calculating the luminosity function that is particularly useful for
reconstructing the galaxy distribution function in multi-dimensional spaces
(e.g., the number of galaxies as a simultaneous function of luminosity in
different filter bands, surface brightness, star formation rate, morphology,
etc.), because it requires no prior assumptions as to the shape of the
distribution function.
The composite luminosity function can be described by a Schechter function
with characteristic magnitude M*_U=-19.82+/-0.27 and faint end slope
alpha_U=-1.09+/-0.18. The total U-band GLF is slightly steeper than the R-band
GLF, indicating that cluster galaxies are bluer at fainter magnitudes.
Quiescent galaxies dominate the cumulative U-band flux for M_U<-14. The
contribution of galaxies in nearby clusters to the U-band extragalactic
background is <1% Gyr^-1 for clusters of masses ~3*10^14 to 2*10^15 M_solar.Comment: 44 pages, 11 figures, accepted for publication in Ap
Multipartite fully-nonlocal quantum states
We present a general method to characterize the quantum correlations obtained
after local measurements on multipartite systems. Sufficient conditions for a
quantum system to be fully-nonlocal according to a given partition, as well as
being (genuinely) multipartite fully-nonlocal, are derived. These conditions
allow us to identify all completely-connected graph states as multipartite
fully-nonlocal quantum states. Moreover, we show that this feature can also be
observed in mixed states: the tensor product of five copies of the Smolin
state, a biseparable and bound entangled state, is multipartite fully-nonlocal.Comment: 5 pages, 1 figure. Version published in PRA. Note that it does not
contain all the results from the previous version; these will be included in
a later, more general, pape
The Impact of Task- and Team-Generic Teamwork Skills Training on Team Effectiveness
This study examined the effects of training team members in three task- and teamgeneric teamwork skills: planning and task coordination, collaborative problem solving, and communication. We first examined the degree to which task- and team-generic teamwork skills training impacted team performance on a task unrelated to the content of the training program.We then examined whether the effects of task- and team-generic teamwork skills training on team performance were due to the transfer of skills directly related to planning and task coordination, collaborative problem solving, and communication. Results from 65 four-person project teams indicated that task- and team-generic teamwork skills training led to significantly higher levels of team performance. Results also indicated that the effects of task- and teamgeneric teamwork skills training on team performance were mediated by planning and task coordination and collaborative problem solving behavior. Although communication was positively affected by the task- and team-generic teamwork skills training, it did not mediate the relationship between task- and team-generic teamwork skills training and team performance.Theoretical and practical implications of these results are discussed, as well as possible limitations and directions for future research
Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: Cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism
We measured membrane permeability, hydrolytic enzyme, and caspase-like activities using fluorescent cell stains to document changes caused by nutrient exhaustion in the coccolithophore Emiliania huxleyi and the diatom Thalassiosira pseudonana, during batch-culture nutrient limitation. We related these changes to cell death, pigment alteration, and concentrations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) to assess the transformation of these compounds as cell physiological condition changes. E. huxleyi persisted for 1 month in stationary phase; in contrast, T. pseudonana cells rapidly declined within 10 d of nutrient depletion. T. pseudonana progressively lost membrane integrity and the ability to metabolize 5-chloromethylfluorescein diacetate (CMFDA; hydrolytic activity), whereas E. huxleyi developed two distinct CMFDA populations and retained membrane integrity (SYTOX Green). Caspase-like activity appeared higher in E. huxleyi than in T. pseudonana during the post-growth phase, despite a lack of apparent mortality and cell lysis. Photosynthetic pigment degradation and transformation occurred in both species after growth; chlorophyll a (Chl a) degradation was characterized by an increase in the ratio of methoxy Chl a : Chl a in T. pseudonana but not in E. huxleyi, and the increase in this ratio preceded loss of membrane integrity. Total DMSP declined in T. pseudonana during cell death and DMS increased. In contrast, and in the absence of cell death, total DMSP and DMS increased in E. huxleyi. Our data show a novel chlorophyll alteration product associated with T. pseudonana death, suggesting a promising approach to discriminate nonviable cells in nature
All quantum states useful for teleportation are nonlocal resources
Understanding the relation between the different forms of inseparability in
quantum mechanics is a longstanding problem in the foundations of quantum
theory and has implications for quantum information processing. Here we make
progress in this direction by establishing a direct link between quantum
teleportation and Bell nonlocality. In particular, we show that all entangled
states which are useful for teleportation are nonlocal resources, i.e. lead to
deterministic violation of Bell's inequality. Our result exploits the
phenomenon of super-activation of quantum nonlocality, recently proved by
Palazuelos, and suggests that the latter might in fact be generic.Comment: 4 pages. v2: Title and abstract changed, presentation improved,
references updated, same result
Disentangling Morphology, Star Formation, Stellar Mass, and Environment in Galaxy Evolution
We present a study of the spectroscopic and photometric properties of
galaxies in six nearby clusters. We perform a partial correlation analysis on
our dataset to investigate whether the correlation between star formation rates
in galaxies and their environment is merely another aspect of correlations of
morphology, stellar mass, or mean stellar age with environment, or whether star
formation rates vary independently of these other correlations. We find a
residual correlation of ongoing star formation with environment, indicating
that even galaxies with similar morphologies, stellar masses, and mean stellar
ages have lower star formation rates in denser environments. Thus, the current
star formation gradient in clusters is not just another aspect of the
morphology-density, stellar mass-density, or mean stellar age-density
relations. Furthermore, the star formation gradient cannot be solely the result
of initial conditions, but must partly be due to subsequent evolution through a
mechanism (or mechanisms) sensitive to environment. Our results constitute a
true ``smoking gun'' pointing to the effect of environment on the later
evolution of galaxies.Comment: 31 pages, including 5 figures; accepted for publication in Ap
Entanglement Scaling in the One-Dimensional Hubbard Model at Criticality
We derive exact expressions for the local entanglement entropy E in the
ground state of the one-dimensional Hubbard model at a quantum phase transition
driven by a change in magnetic field h or chemical potential u. The leading
divergences of dE/dh and dE/du are shown to be directly related to those of the
zero-temperature spin and charge susceptibilities. Logarithmic corrections to
scaling signal a change in the number of local states accessible to the system
as it undergoes the transition.Comment: 4+ pages, 2 figures. Fig. 2 and minor typos correcte
Hidden variable interpretation of spontaneous localization theory
The spontaneous localization theory of Ghirardi, Rimini, and Weber (GRW) is a
theory in which wavepacket reduction is treated as a genuine physical process.
Here it is shown that the mathematical formalism of GRW can be given an
interpretation in terms of an evolving distribution of particles on
configuration space similar to Bohmian mechanics (BM). The GRW wavefunction
acts as a pilot wave for the set of particles. In addition, a continuous stream
of noisy information concerning the precise whereabouts of the particles must
be specified. Nonlinear filtering techniques are used to determine the dynamics
of the distribution of particles conditional on this noisy information and
consistency with the GRW wavefunction dynamics is demonstrated. Viewing this
development as a hybrid BM-GRW theory, it is argued that, besides helping to
clarify the relationship between the GRW theory and BM, its merits make it
worth considering in its own right.Comment: 13 page
- …