14 research outputs found

    Antidiabetic effect of oral supplementation with Caulerpa racemosa powder

    Get PDF
    Algae are known for their high nutritional value and the presence of bioactive compounds with anti-diabetic activity. In this study, the effects of oral supplementation with the whole powdered green alga Caulerpa racemosa was assessed on biochemical and organic parameters in rat model of type 2 diabetes.  Type 2 diabetes model (DM) was induced by high fat diet (HFD) (5.75 kcal/g) combined to streptozotocin injection (35 mg/kg). The DM-C500 and DM-C1000 groups were maintained on HFD and supplemented orally during four weeks with powdered C. racemosa at 500 and 1000 mg/kg of body weight, respectively. The DM-C0 group was fed with HFD without C. racemosa supplementation. All the experimental rats were maintained on HFD during the 30 days of experiment. C. racemosa at 500 mg/kg improved fasting glycaemia and glucose tolerance. The IPGTT test revealed a decrease (p<0.05) in the fasting glycaemia recorded at the 120th min from day 0 (534 ± 38.88 mg/dL) to day 30 (326 ± 63.05 mg/dL). C. racemosa supplementation prevented liver lipid peroxidation in DM-C500 and DM-C1000 group (12.94 ± 2.20 and 10.48 ± 1.15 nmol MDA/g, respectively) compared to DM-C0 group (35.49 ± 2.30 nmol MDA/g). Caulerpa racemosa at 500 mg/kg, and relatively at 1000 mg/kg, alleviated pancreatic, liver and renal tissue damages compared to DM-C0 groups which displayed injuries in their histological sections. Caulerpa racemosa oral supplementation could represent a possible natural approach to prevent organic and metabolic disorders related to type 2 diabetes. DOI: http://dx.doi.org/10.5281/zenodo.656052

    Placental-mediated increased cytokine response to lipopolysaccharides: a potential mechanism for enhanced inflammation susceptibility of the preterm fetus.

    Get PDF
    BackgroundCerebral palsy is a nonprogressive motor impairment syndrome that has no effective cure. The etiology of most cases of cerebral palsy remains unknown; however, recent epidemiologic data have demonstrated an association between fetal neurologic injury and infection/inflammation. Maternal infection/inflammation may be associated with the induction of placental cytokines that could result in increased fetal proinflammatory cytokine exposure, and development of neonatal neurologic injury. Therefore, we sought to explore the mechanism by which maternal infection may produce a placental inflammatory response. We specifically examined rat placental cytokine production and activation of the Toll-like receptor 4 (TLR4) pathway in response to lipopolysaccharide exposure at preterm and near-term gestational ages.MethodsPreterm (e16) or near-term (e20) placental explants from pregnant rats were treated with 0, 1, or 10 μg/mL lipopolysaccharide. Explant integrity was assessed by lactate dehydrogenase assay. Interleukin-6 and tumor necrosis alpha levels were determined using enzyme-linked immunosorbent assay kits. TLR4 and phosphorylated nuclear factor kappa light chain enhancer of activated B cells (NFκB) protein expression levels were determined by Western blot analysis.ResultsAt both e16 and e20, lactate dehydrogenase levels were unchanged by treatment with lipopolysaccharide. After exposure to lipopolysaccharide, the release of interleukin-6 and tumor necrosis alpha from e16 placental explants increased by 4-fold and 8-9-fold, respectively (P < 0.05 versus vehicle). Conversely, interleukin-6 release from e20 explants was not significantly different compared with vehicle, and tumor necrosis alpha release was only 2-fold higher (P < 0.05 versus vehicle) following exposure to lipopolysaccharide. Phosphorylated NFκB protein expression was significantly increased in the nuclear fraction from placental explants exposed to lipopolysaccharide at both e16 and e20, although TLR4 protein expression was unaffected.ConclusionLipopolysaccharide induces higher interleukin-6 and tumor necrosis alpha expression at e16 versus e20, suggesting that preterm placentas may have a greater placental cytokine response to lipopolysaccharide infection. Furthermore, increased phosphorylated NFκB indicates that placental cytokine induction may occur by activation of the TLR4 pathway

    Altered placental development in undernourished rats: role of maternal glucocorticoids

    Get PDF
    Maternal undernutrition (MUN) during pregnancy may lead to fetal intrauterine growth restriction (IUGR), which itself predisposes to adult risk of obesity, hypertension, and diabetes. IUGR may stem from insufficient maternal nutrient supply or reduced placental nutrient transfer. In addition, a critical role for maternal stress-induced glucocorticoids (GCs) has been suggested to contribute to both IUGR and the ensuing risk of adult metabolic syndrome. While GC-induced fetal organ defects have been examined, there have been few studies on placental responses to MUN-induced maternal stress. Therefore, we hypothesize that 50% MUN associates with increased maternal GC levels and decreased placental HSD11B. This in turn leads to decreased placental and fetal growth, hence the need to investigate nutrient transporters. We measured maternal serum levels of corticosterone, and the placental basal and labyrinth zone expression of glucocorticoid receptor (NR3C1), 11-hydroxysteroid dehydrogenase B 1 (HSD11B-1) predominantly activates cortisone to cortisol and 11-dehydrocorticosterone (11-DHC) to corticosterone, although can sometimes drive the opposing (inactivating reaction), and HSD11B-2 (only inactivates and converts corticosterone to 11-DHC in rodents) in control and MUN rats at embryonic day 20 (E20). Moreover, we evaluated the expression of nutrient transporters for glucose (SLC2A1, SLC2A3) and amino acids (SLC38A1, 2, and 4). Our results show that MUN dams displayed significantly increased plasma corticosterone levels compared to control dams. Further, a reduction in fetal and placental weights was observed in both the mid-horn and proximal-horn positions. Notably, the placental labyrinth zone, the site of feto-maternal exchange, showed decreased expression of HSD11B1-2 in both horns, and increased HSD11B-1 in proximal-horn placentas, but no change in NR3C1. The reduced placental GCs catabolic capacity was accompanied by downregulation of SLC2A3, SLC38A1, and SLC38A2 expression, and by increased SLC38A4 expression, in labyrinth zones from the mid- and proximal-horns. In marked contrast to the labyrinth zone, the basal zone, which is the site of hormone production, did not show significant changes in any of these enzymes or transporters. These results suggest that dysregulation of the labyrinth zone GC "barrier", and more importantly decreased nutrient supply resulting from downregulation of some of the amino acid system A transporters, may contribute to suboptimal fetal growth under MUN

    Gestational diabetes mellitus alters apoptotic and inflammatory gene expression of trophobasts from human term placenta

    No full text
    AimIncreased placental growth secondary to reduced apoptosis may contribute to the development of macrosomia in GDM pregnancies. We hypothesize that reduced apoptosis in GDM placentas is caused by dysregulation of apoptosis related genes from death receptors or mitochondrial pathway or both to enhance placental growth in GDM pregnancies.MethodsNewborn and placental weights from women with no pregnancy complications (controls; N=5), or with GDM (N=5) were recorded. Placental villi from both groups were either fixed for TUNEL assay, or snap frozen for gene expression analysis by apoptosis PCR microarrays and qPCR.ResultsMaternal, placental and newborn weights were significantly higher in the GDM group vs. Controls. Apoptotic index of placentas from the GDM group was markedly lower than the Controls. At a significant threshold of 1.5, seven genes (BCL10, BIRC6, BIRC7, CASP5, CASP8P2, CFLAR, and FAS) were down regulated, and 13 genes (BCL2, BCL2L1, BCL2L11, CASP4, DAPK1, IκBκE, MCL1, NFκBIZ, NOD1, PEA15, TNF, TNFRSF25, and XIAP) were unregulated in the GDM placentas. qPCR confirmed the consistency of the PCR microarray. Using Western blotting we found significantly decreased placental pro-apoptotic FAS receptor and FAS ligand (FASL), and increased mitochondrial anti-apoptotic BCL2 post GDM insult. Notably, caspase-3, which plays a central role in the execution-phase of apoptosis, and its substrate poly (ADP-ribose) polymerase (PARP) were significantly down regulated in GDM placentas, as compared to non-diabetic Control placentas.ConclusionMaternal GDM results in heavier placentas with aberrant placental apoptotic and inflammatory gene expression that may account, at least partially, for macrosomia in newborns

    Glyceryl Trinitrate Inhibits Hypoxia/Reoxygenation-Induced Apoptosis in the Syncytiotrophoblast of the Human Placenta : Therapeutic Implications for Preeclampsia

    No full text
    Damage of the placenta resulting from ischemia-reperfusion is important to the pathophysiology of preeclampsia. Here we investigated whether low concentrations of glyceryl trinitrate (GTN), a nitric oxide mimetic with anti-apoptotic properties, inhibit hypoxia/reoxygenation-induced apoptosis in the syncytiotrophoblast of chorionic villous explants from human placentas. Compared with villi analyzed immediately after delivery or maintained under normoxic conditions, villi exposed to a 6-hour cycle of hypoxia/reoxygenation exhibited greater numbers of syncytiotrophoblasts with terminal dUTP nick-end labeling (TUNEL)-positive nuclei in the syncytiotrophoblast. This increased number of TUNEL-positive nuclei was paralleled by higher levels of 4-hydroxynonenal (marker of lipid peroxidation), nitrotyrosine residues, and active caspase-3 and polyADP-ribose polymerase expression. Morphological analysis of explants exposed to hypoxia/reoxygenation revealed apoptotic and aponecrotic features similar to those of chorionic villi from preeclamptic pregnancies. Treatment with GTN during the hy-poxia/reoxygenation cycle blocked the increases in the number of TUNEL-positive nuclei and in the levels of 4-hydroxynonenal, nitrotyrosine, and active caspase-3. Incubation with GTN also attenuated the hypoxia/reoxygenation-induced polyADP-ribose polymerase expression and the apoptotic and aponecrotic morphological alterations. These results suggest that small concentrations of nitric oxide protect chorionic villi from hypoxia/reoxygenation-induced damage and provide a rationale for the use of low doses of nitric oxide mimetics in the treatment and/or prevention of preeclampsia
    corecore