356 research outputs found

    Carbon Nanotubes: Applications to Energy Storage Devices

    Get PDF
    Carbon nanotubes (CNTs) are an extraordinary discovery in the area of science and technology. Engineering them properly holds the promise of opening new avenues for future development of many other materials for diverse applications. Carbon nanotubes have open structure and enriched chirality, which enable improvements the properties and performances of other materials when CNTs are incorporated in them. Energy storage systems have been using carbon nanotubes either as an additive to improve electronic conductivity of cathode materials or as an active anode component depending upon structural and morphological specifications. Furthermore, they have also been used directly as the electrode material in supercapacitors and fuel cells. Therefore, CNTs demand a huge importance due to their underlying properties and prospective applications in the energy storage research fields. There are different kinds of carbon nanotubes which have been successfully used in batteries, supercapacitors, fuel cells and other energy storage systems. This chapter focuses on the role of CNTs in the different energy storage and conversion systems and impact of their structure and morphology on the electrochemical performances and storage mechanisms

    Phospho-Olivine as Advanced Cathode Material for Lithium Batteries

    Get PDF
    Nano-sized and micron-sized LiFePO4 electrode materials were prepared by a sol gel and coprecipitation reactions. An improvement of the cycling and rate performances in lithium cells was observed for the carbon coated LiFePO4 materials. The coating process uses a solid/gas-phase reaction which consists of decomposing propylene gas, as carbon source, inside a reactor containing olivine LiFePO4 materials. Optimized LiFePO4 electrode cells, cycled at RT between 3.0 and 4.3 V at a C/10 rate, do not show any sign of capacity fade during the first 50 cycles. Combination of the high volumetric energy density and low cost preparation method makes the micron-sized LiFePO4 olivine an attractive safe cathode for lithium-ion batteries

    Current Status and Prospects of Solid-State Batteries as the Future of Energy Storage

    Get PDF
    Solid-state battery (SSB) is the new avenue for achieving safe and high energy density energy storage in both conventional but also niche applications. Such batteries employ a solid electrolyte unlike the modern-day liquid electrolyte-based lithium-ion batteries and thus facilitate the use of high-capacity lithium metal anodes thereby achieving high energy densities. Despite this promise, practical realization and commercial adoption of solid-state batteries remain a challenge due to the underlying material and cell level issues that needs to be overcome. This chapter thus covers the specific challenges, design principles and performance improvement strategies pertaining to the cathode, solid electrolyte and anode used in solid state batteries. Perspectives and outlook on specific applications that can benefit from the successful implementation of solid-state battery systems are also discussed. Overall, this chapter highlights the potential of solid-state batteries for successful commercial deployment in next generation energy storage systems

    Design and Performance of lithium-Ion Batteries for Achieving Electric Vehicle Takeoff, Flight, and Landing

    Get PDF
    Today, the burgeoning drive towards global urbanization with over half the earth’s population living in cities, has created major challenges with regards to intracity and intercity transit and mobility. This problem is compounded due to the fact that almost always urbanization and increase in standard of living drives individual automobile ownerships. Over 95% of automobiles are presently powered by some form of fossil fuel and as an unintended consequence, urban centers have also been centers for peak greenhouse gas emissions, a major contributor to global climate change. A revolutionary solution to this conundrum is flight capable electric automobiles or electric aerial vehicles that can tackle both urban mobility and climate change challenges. For such advanced electric platforms, energy storage and delivery component is the vital component towards achieving takeoff, flight, cruise, and landing. The requirements and duty cycle demands on the energy storage system is drastically different when compared to the performance metrics required for terrestrial electric vehicles. As the widely deployed lithium ion-based battery systems are often the primary go-to energy storage choice in electric vehicle related applications, it is imperative that performance metrics and specifications for such batteries towards areal electric vehicles need to be established. In this nascent field, there exists ample opportunities for battery material innovations, understanding degradation mechanism, battery design, development and deployment of battery control and management systems. Thus, this chapter comprehensively discusses battery requirements and identifies battery material chemistries suitable for handling aerial electric automobile duty cycles. The chapter also discusses the battery cell-level metrics pertaining to electrochemical, chemical, mechanical, and structural parameters. Furthermore, specific models for battery degradation, state of health (SOH), capacity and models for full cell performance and degradation are also discussed here. Finally, the chapter also discusses battery safety and future directions of batteries that would power these next generation urban electric aircrafts

    Aliovalent titanium substitution in layered mixed Li Ni–Mn–Co oxides for lithium battery applications

    Get PDF
    Improved electrochemical characteristics are observed for Li[Ni1/3Co1/3-yMyMn1/3]O2 cathode materials when M=Ti and y<0.07, compared to the baseline material, with up to 15percent increased discharge capacity

    Redetermination of AgPO3

    Get PDF
    Single crystals of silver(I) polyphosphate(V), AgPO3, were prepared via a phospho­ric acid melt method using a solution of Ag3PO4 in H3PO4. In comparison with the previous study based on single-crystal Weissenberg photographs [Jost (1961 ▶). Acta Cryst. 14, 779–784], the results were mainly confirmed, but with much higher precision and with all displacement parameters refined anisotropically. The structure is built up from two types of distorted edge- and corner-sharing [AgO5] polyhedra, giving rise to multidirectional ribbons, and from two types of PO4 tetra­hedra linked into meandering chains (PO3)n spreading parallel to the b axis with a repeat unit of four tetra­hedra. The calculated bond-valence sum value of one of the two AgI ions indicates a significant strain of the structure

    Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries

    Get PDF
    The electrochemical kinetics of battery electrodes at the single-particle scale are measured as a function of state-of-charge, and interpreted with the aid of concurrent transmission X-ray microscopy (TXM) of the evolving particle microstructure. An electrochemical cell operating with near-picoampere current resolution is used to characterize single secondary particles of two widely-used cathode compounds, NMC333 and NCA. Interfacial charge transfer kinetics are found to vary by two orders of magnitude with state-of-charge (SOC) in both materials, but the origin of the SOC dependence differs greatly. NCA behavior is dominated by electrochemically-induced microfracture, although thin binder coatings significantly ameliorate mechanical degradation, while NMC333 demonstrates strongly increasing interfacial reaction rates with SOC for chemical reasons. Micro-PITT is used to separate interfacial and bulk transport rates, and show that for commercially relevant particle sizes, interfacial transport is rate-limiting at low SOC, while mixed-control dominates at higher SOC. These results provide mechanistic insight into the mesoscale kinetics of ion intercalation compounds, which can guide the development of high performance rechargeable batteries

    Direct synthesis of novel homogeneous nanocomposites of Li2MnSiO4 and carbon as a potential Li-ion battery cathode material

    Get PDF
    Homogeneous nanocomposites of nanocrystalline Li2MnSiO 4 and carbon as well as a carbon nanotubes-embedded nanocomposite are synthesized directly by a novel method using organic-inorganic hybrid polymers which consist of covalently bonded phenolic oligomer and siloxane parts. The nanocomposites show superior charge-discharge performance at room temperature in spite of low carbon contents

    Structure and lithium transport pathways in Li<sub>2</sub>FeSiO<sub>4</sub> cathodes for lithium batteries

    Get PDF
    The importance of exploring new low-cost and safe cathodes for large-scale lithium batteries has led to increasing interest in Li(2)FeSiO(4). The structure of Li(2)FeSiO(4) undergoes significant change on cycling, from the as-prepared γ(s) form to an inverse β(II) polymorph; therefore it is important to establish the structure of the cycled material. In γ(s) half the LiO(4), FeO(4), and SiO(4) tetrahedra point in opposite directions in an ordered manner and exhibit extensive edge sharing. Transformation to the inverse β(II) polymorph on cycling involves inversion of half the SiO(4), FeO(4), and LiO(4) tetrahedra, such that they all now point in the same direction, eliminating edge sharing between cation sites and flattening the oxygen layers. As a result of the structural changes, Li(+) transport paths and corresponding Li-Li separations in the cycled structure are quite different from the as-prepared material, as revealed here by computer modeling, and involve distinct zigzag paths between both Li sites and through intervening unoccupied octahedral sites that share faces with the LiO(4) tetrahedra
    corecore