194 research outputs found

    The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires. Here I utilise experimental approaches to explore relationships between litter fire behaviour and leaf traits that are observable in the fossil record. Fire calorimetry was used to assess the flammability of 15 species of conifer litter and indicated that leaf morphology related to litter bulk density and fuel load, which determined the duration of burning and the total energy released. These data were applied to a fossil case study which couples estimates of palaeolitter fire behaviour to charcoal based estimates of fire activity and observations of palaeoecological changes. The case study reveals that significant changes in fire activity and behaviour likely fed back to determine ecosystem composition. This work highlights that we can recognize and measure plant traits in the fossil record that relate to fire behaviour and therefore that further research is warranted toward estimating palaeofire behaviour as it can enhance our ability to interpret the palaeoecological impact of paleofires throughout Earth’s long evolutionary history.CMB acknowledges funding from a Marie Curie Intra-European Fellowship FILE-PIEF-GA-2009-25378 and a European Research Council Starter Grant ERC-2013-StG-335891-ECOFLAM that have both contributed to the development of ideas presented in this manuscript

    The formation of charcoal reflectance and its potential use in post-fire assessments

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Charcoal has an exceptional ability to reflect light when viewed using reflectance microscopy. The amount of light reflected is variable depending on the differential ordering of graphite-like phases within the charcoal itself. It has been suggested that this relates to the temperature of formation, whereby higher formation temperatures result in high charcoal reflectance. However, this explanation is derived from oven-based chars that do not well represent the natural combustion process. Here, we have experimentally created charcoals using a cone calorimeter, in order to explore the development of charcoal reflectance during pre-ignition heating and peak heat-release rate, through to the end of flaming and the transition to char oxidation. We find that maximum charcoal reflectance is reached at the transition between pyrolysis and char oxidation, before its conversion to mineral ash, and indicates that our existing understanding of reflectance is in error. We suggest that charcoal reflectance warrants additional study as it may provide a useful quantitative addition to ground-based fire severity surveys, because it may allow exploration of surface heating after the main fire front has passed and the fire transitions to smouldering phases.This research was funded by a European Research Council Starter Grant ERC-2013-StG-335891-ECOFLAM (awarded to CMB

    Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.Angiosperms evolved and diversified during the Cretaceous period. Early angiosperms were short-stature weedy plants thought to have increased fire frequency and mortality in gymnosperm forest, aiding their own expansion. However, no explorations have considered whether the range of novel fuel types that diversified throughout the Cretaceous also altered fire behaviour, which should link more strongly to mortality than fire frequency alone. We measured ignitability and heat of combustion in analogue Cretaceous understorey fuels (conifer litter, ferns, weedy and shrubby angiosperms) and used these data to model palaeofire behaviour. Variations in ignition, driven by weedy angiosperms alone, were found to have been a less important feedback to changes in Cretaceous fire activity than previously estimated. Our model estimates suggest that fires in shrub and fern understories had significantly greater fireline intensities than those fuelled by conifer litter or weedy angiosperms, and whilst fern understories supported the most rapid fire spread, angiosperm shrubs delivered the largest amount of heat per unit area. The higher fireline intensities predicted by the models led to estimates of enhanced scorch of the gymnosperm canopy and a greater chance of transitioning to crown fires. Therefore, changes in fire behaviour driven by the addition of new Cretaceous fuel groups may have assisted the angiosperm expansion.We thank two anonymous reviewers and the editor David Ackerly for providing useful comments that helped improve this manuscript. Thanks to Mark Grosvenor for technical support in the University of Exeter wildFIRE Lab and Nick Walding for assistance in plotting some of the figures. We thank the grounds teams at Bristol Botanic Gardens and the University of Exeter for providing plant material for our experiments. This research was funded by a European Research Council Starter Grant (ERC-2013-StG-335891-ECOFLAM); awarded to C.M.B

    Charcoal morphometry for paleoecological analysis: The effects of fuel type and transportation on morphological parameters

    Get PDF
    This is the final version of the article. Available from Botanical Society of America via the DOI in this record.Premise of the study: Charcoal particles preserved in sediments are used as indicators of paleowildfire. Most research focuses on abundance as an indicator of fire frequency, but charcoals also convey information about the vegetation from which they are derived. One potential source of information is their morphology, which is influenced by the parent material, the nature of the fire, and subsequent transportation and burial. Methods: We charcoalified 26 materials from a range of plant taxa, and subjected them to simulated fluvial transport by tumbling them with water and gravel. We photographed the resulting particles, and used image analysis software to measure morphological parameters. Results: Leaf charcoal displayed a logarithmic decrease in area, and a logarithmic increase in circularity, with transportation time. Trends were less clear for stem or wood charcoal. Grass charcoal displayed significantly higher aspect ratios than other charcoal types. Conclusions: Leaf charcoal displays more easily definable relationships between morphological parameters and degree of breakdown than stem or wood charcoal. The aspect ratios of fossil mesocharcoal can indicate the broad botanical source of an assemblage. Coupled to estimates of charcoal abundance, this will improve understanding of the variation in flammability of ancient ecosystems.This research was supported by funding from a Marie Curie Career Integration Grant (to C.M.B.; PCIG10-GA-2011-303610)

    Latest Permian chars may derive from wildfires, not coal combustion

    Get PDF
    The Permian-Triassic boundary extinction event was the largest biological crisis of the Phanerozoic. One of the principle triggers for the mass extinction is thought to be greenhouse warming resulting from the release of CH4 from basalt-coal interaction during the extensive Siberian Traps (Russia) eruptions. Observations of organic matter interpreted to be coal combustion products (fly ash) in latest Permian marine sediments have been used to support this hypothesis. However, this interpretation is dependent upon vesicular chars being fly ash (coal combustion derived) and not formed by alternative mechanisms. Here we present reflectance microscopy images of vesicular chars from Russian Permian coals, and chars from modern tundra, peatland, and boreal forest fires, to demonstrate that despite a difference in precursor fuels, wildfires are capable of generating vesicular chars that are morphologically comparable to end-Permian fly ash. These observations, coupled with extensive global evidence of wildfires during this time interval, call into question the contribution of coal combustion to the end- Permian extinction event.We acknowledge funding from the Natural Environment Research Council and CASE Studentship grant NE/F013698/1 (Hudspith’s Ph.D. thesis, Royal Holloway University of London), for the late Permian coal samples from the Kuznetsk Basin, Siberia, Russia. National Science Foundation (NSF) grant ARC-0612366 (to F.S. Hu) funded the analysis of the boreal and tundra samples, and European Research Council Starter Grant ERC-2013-StG-335891-ECOFLAM funded Hudspith and Belcher for analysis of the modern peatland samples. We thank M.E. Collinson and A.C. Scott for use of reflectance microscope facilities at Royal Holloway University of London, and N. Holloway and S. Pendray for polished block preparation. We also thank four anonymous reviewers for their helpful comments

    Quantitative charcoal reflectance measurements better link to regrowth potential than ground-based fire-severity assessments following a recent heathland wildfire at Carn Brea, Cornwall, UK

    Get PDF
    This is the final version. Available on open access from CSIRO Publishing via the DOI in this record.Charcoal has recently been suggested to retain information about the fire that generated it. When looked at under a microscope, charcoals formed by different aspects of fire behaviour indicate different ability to reflect the amount of light when studied using the appropriate technique. It has been suggested that this method, charcoal reflectance (Ro), might be able to provide a quantitative fire severity metric that can be used in conjunction with or instead of standard qualitative fire severity scores. We studied charcoals from a recent heathland wildfire in Carn Brea, Cornwall, UK, and assessed whether charcoal reflectance (Ro) can be linked to standard qualitative fire severity scores for the burned area. We found that charcoal reflectance was greater at sites along the burned area that had been scored as having a higher qualitative fire severity. However, there were clear instances where the quantitative charcoal reflectance measurements were able to better indicate damage and regrowth potential than qualitative scoring alone. We suggest measuring the reflectance of charcoals may not only be able to provide quantitative information about the spatial distribution of heat across a burned area post fire but that this approach is able to provide improvement to fire severity assessment approaches.European Research CouncilNatural Environment Research Counci

    Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal.

    Get PDF
    Published onlineHistorical ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pone.0072265Variations in the abundance of fossil charcoals between rocks and sediments are assumed to reflect changes in fire activity in Earth's past. These variations in fire activity are often considered to be in response to environmental, ecological or climatic changes. The role that fire plays in feedbacks to such changes is becoming increasingly important to understand and highlights the need to create robust estimates of variations in fossil charcoal abundance. The majority of charcoal based fire reconstructions quantify the abundance of charcoal particles and do not consider the changes in the morphology of the individual particles that may have occurred due to fragmentation as part of their transport history. We have developed a novel application of confocal laser scanning microscopy coupled to image processing that enables the 3-dimensional reconstruction of individual charcoal particles. This method is able to measure the volume of both microfossil and mesofossil charcoal particles and allows the abundance of charcoal in a sample to be expressed as total volume of charcoal. The method further measures particle surface area and shape allowing both relationships between different size and shape metrics to be analysed and full consideration of variations in particle size and size sorting between different samples to be studied. We believe application of this new imaging approach could allow significant improvement in our ability to estimate variations in past fire activity using fossil charcoals.This research was supported by funding from a European Union Marie Curie Intra-European Fellowship (FILE-PIEF-GA-2009-25378 to CMB), a Marie Curie Career Integration Grant (PyroMap PCIG10-GA-2011-303610 to CMB), a University of Exeter Outward Mobility Academic Fellowship (to CMB) and the US National Science Foundation (DBI-1052997 to SWP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Increased atmospheric SOâ‚‚ detected from changes in leaf physiognomy across the Triassic-Jurassic boundary interval of East Greenland

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The Triassic-Jurassic boundary (Tr-J; ∼201 Ma) is marked by a doubling in the concentration of atmospheric CO2, rising temperatures, and ecosystem instability. This appears to have been driven by a major perturbation in the global carbon cycle due to massive volcanism in the Central Atlantic Magmatic Province. It is hypothesized that this volcanism also likely delivered sulphur dioxide (SO2) to the atmosphere. The role that SO2 may have played in leading to ecosystem instability at the time has not received much attention. To date, little direct evidence has been presented from the fossil record capable of implicating SO2 as a cause of plant extinctions at this time. In order to address this, we performed a physiognomic leaf analysis on well-preserved fossil leaves, including Ginkgoales, bennettites, and conifers from nine plant beds that span the Tr-J boundary at Astartekløft, East Greenland. The physiognomic responses of fossil taxa were compared to the leaf size and shape variations observed in nearest living equivalent taxa exposed to simulated palaeoatmospheric treatments in controlled environment chambers. The modern taxa showed a statistically significant increase in leaf roundness when fumigated with SO2. A similar increase in leaf roundness was also observed in the Tr-J fossil taxa immediately prior to a sudden decrease in their relative abundances at Astartekløft. This research reveals that increases in atmospheric SO2 can likely be traced in the fossil record by analyzing physiognomic changes in fossil leaves. A pattern of relative abundance decline following increased leaf roundness for all six fossil taxa investigated supports the hypothesis that SO2 had a significant role in Tr-J plant extinctions. This finding highlights that the role of SO2 in plant biodiversity declines across other major geological boundaries coinciding with global scale volcanism should be further explored using leaf physiognomy.KLB acknowledges funding through a UCD Research Demonstratorship and Science Foundation Ireland (SFI 11/PI/1103). CMB acknowledges funding through a European Union Marie Curie Intra-European Fellowship FILE PIEF-GA-2009-253780 and a Marie Curie Career Integration Grant PyroMap PCIG10-GA- 2011-303610. MH acknowledges funding though PEA-IEF-2010-275626. JMC acknowledges funding through Science Foundation Ireland (SFI 11/PI/1103) and a European Research Council Starting Investigator Grant (ERC-2001-StG_279962). JMC, CMB, and MH acknowledge funding through a Marie Curie research grant (MEXT-CT-2006-042531)

    Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.The Toarcian Oceanic Anoxic Event (T-OAE) was characterized by a major disturbance to the global carbon(C)-cycle, and depleted oxygen in Earth’s oceans resulting in marine mass extinction. Numerical models predict that increased organic carbon burial should drive a rise in atmospheric oxygen (pO2) leading to termination of an OAE after ∼1 Myr. Wildfire is highly responsive to changes in pO2 implying that fire-activity should vary across OAEs. Here we test this hypothesis by tracing variations in the abundance of fossil charcoal across the T-OAE. We report a sustained ∼800 kyr enhancement of fire-activity beginning ∼1 Myr after the onset of the T-OAE and peaking during its termination. This major enhancement of fire occurred across the timescale of predicted pO2 variations, and we argue this was primarily driven by increased pO2. Our study provides the first fossil-based evidence suggesting that fire-feedbacks to rising pO2 may have aided in terminating the T-OAE.We thank the Natural Environment Research Council for funding through a studentship grant NE/L501669/1 to S.J.B. C.M.B. acknowledges funding via an ERC Starter Grant ERC-2013-StG-335891-ECOFLAM. S.P.H., T.M.L. and C.M.B. acknowledge funding from the NERC ‘JET’ grant NE/N018508/1, as well as a Royal Society Wolfson Research Merit Award supporting T.M.L
    • …
    corecore