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ABSTRACT 7 

The Permian-Triassic extinction event was the largest biocrisis of the Phanerozoic. One 8 

of the principle triggers for the ‘big dying’ is thought to be greenhouse warming resulting from 9 

the release of CH4 from basalt-coal interaction during the extensive Siberian Trap eruptions. 10 

Observations of organic matter interpreted to be coal combustion products (fly ash) in latest 11 

Permian marine sediments have been used to support this hypothesis. However, this 12 

interpretation is dependent upon vesicular chars being fly ash (coal combustion-derived) and not 13 

formed by alternative mechanisms. Here we present reflectance microscopy images of vesicular 14 

chars from Russian Permian coals, as well as chars from modern tundra, peatland and boreal 15 

forest fires, to demonstrate that despite a difference in precursor fuels, wildfires are capable of 16 

generating vesicular chars that are morphologically comparable to end Permian ‘fly ash’. These 17 

observations, coupled with extensive global evidence of wildfires during this time interval calls 18 

into question the contribution of coal combustion to the end Permian extinction event. 19 

INTRODUCTION 20 

The Permian-Triassic boundary event decimated 80-96% of marine and 70% of terrestrial 21 

life and is marked in the geological record by a significant 2–8‰ negative organic and carbonate 22 
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δ13C excursion (Chen and Benton, 2012). One suggestion is that massive greenhouse warming 23 

(Erwin, 1994) led to the most significant mass extinction event ever to occur on our planet. One 24 

of the greenhouse contributors is thought to have been extensive CH4 release from the 25 

combustion of coals and organic-rich shales, during the emplacement of shallow intrusions, as 26 

part of the Siberian Trap eruptions (Retallack and Jahren, 2008; Grasby et al., 2011; Ogden and 27 

Sleep, 2012). 28 

In modern coal-fired power stations char is produced during high temperature 29 

combustion of pulverized coal. The coals undergo complex physical and chemical 30 

transformations, giving off volatiles and producing solid residues (char). The resulting char 31 

(termed ‘coal fly ash’ in Grasby et al. (2011)) is highly variable depending on the organic 32 

constituents of the precursor coal (Bailey et al., 1990; Yu et al., 2007; Lester et al., 2010), and 33 

the morphology of the char ranges from solid to vesicular. Vesicular chars in particular, in Late 34 

Permian sediments from Lake Buchanan in Arctic Canada have been interpreted as definitive 35 

evidence of coal combustion. These chars represent the only physical indicator of coal 36 

combustion outside of Siberia and have been used extensively as evidence for global dispersal of 37 

coal fly ash at the end Permian extinction event (Grasby et al., 2011; Ogden and Sleep, 2012; 38 

Sanei et al., 2012; Knies et al., 2013; Kerr, 2013). In order to transport these coal combustion 39 

chars 20,000 km from the Siberian Trap source, models imply that explosive interactions of coal 40 

and magma would be required to propel coal-char-basalt mixtures into the stratosphere, thus 41 

enabling global distribution of the resulting coal fly ash (Ogden and Sleep, 2012). Yet the lack of 42 

documented coal fly ash elsewhere casts doubt on this transport mechanism. Until now, coal 43 

combustion has been the only considered mechanism for char formation; however, vesicular 44 

chars can also form naturally during modern wildfires (e.g. Fig. 1 E-J). Further, much of the 45 
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“coal fly ash” (illustrated in Grasby et al. (2011)) is described as deriving from inertinite 46 

precursors. Inertinite is a coal petrography term for fossil charcoal (Glasspool and Scott, 2010). 47 

Therefore, it should be evaluated whether these Late Permian chars in fact represent small 48 

fragments of fossil charcoal produced in contemporaneous Late Permian wildfires (compare 49 

figure 2 in Grasby et al. (2011) with images of inertinite in Fig. S1). Typically, inertinite is 50 

described as having cellular structure (e.g., Figure 1B; Fig. S1G,I-J; ICCP, 2001), but inertinite 51 

morphology can be highly variable (e.g., Fig. S1; Fig. S2A-C; ICCP, 2001), and charcoal only 52 

represents one component in a continuum of products produced by wildfires (Masiello, 2004) 53 

(Fig. 1). Wildfire-derived char can have a variety of morphologies (Fig. 1) and in this study we 54 

will focus on one of these char products that we call vesicular char (otherwise referred to as 55 

natural char in the coal literature e.g., Petersen (1998) and Kwiecińska and Petersen (2004)). 56 

Vesicular chars have been documented previously in coals and carbonaceous mudstones of 57 

Carboniferous, Permian, Jurassic, Cretaceous and Tertiary age (Kwiecińska and Petersen, 2004). 58 

Here we document vesicular char from wildfire-derived charcoal assemblages, in modern 59 

ecosystems as well as in Late Permian coals (Fig. 1; Figs. S1-S2) in order to demonstrate that 60 

wildfires can produce vesicular char that is morphologically comparable to chars interpreted by 61 

Grasby et al. (2011) to be coal fly ash from the Permian-Triassic event. 62 

METHODS 63 

Polished blocks containing Permian, modern tundra, modern peatland and Holocene 64 

Alaskan boreal forest vesicular chars (see supplementary material for detailed sampling 65 

information) were studied under oil using reflected-light microscopy. The peatland and Holocene 66 

samples were studied using a Leica DM2500P reflectance microscope at × 200 and × 500 67 

magnifications, at Southern Illinois University Carbondale, USA. Images were taken using a 68 
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Leica DFC 400 digital camera and Leica Application Suite imaging software. The Permian coal 69 

and tundra samples were analyzed at Royal Holloway University of London, UK, using a Leica 70 

DM2500P reflectance microscope at × 200 magnification. Representative color 71 

photomicrographs (2560 × 1920 pixel resolution) were taken using a 5-megapixel camera 72 

attached to the reflectance microscope and Prog-Res Capture Pro 2.7 software.  73 

RESULTS 74 

Vesicular char is thought to form from the burning of gelified plant material during 75 

ground or surface fires in ancient mire environments (Petersen, 1998). The Permian chars in this 76 

study originate from a peat-forming environment in the Kuznetsk Basin, Siberia (Fig. 1A-D; Fig. 77 

S1), supporting the formation of vesicular chars in mire ground/surface fires. However, we 78 

further document the occurrence of vesicular chars in charcoal assemblages from Holocene 79 

boreal forest (Fig. 1E-F), and modern tundra (Fig. 1G-H) ecosystems in Alaska, as well as a 80 

modern peat bog in Ireland (Fig. 1I-J), thus demonstrating that vesicular char can form 81 

irrespective of fuel or ecosystem type, and emphasizing that the mechanisms of char formation 82 

are still not fully understood. This might explain why vesicular chars, despite their common 83 

occurrence in coals and carbonaceous mudstones, are an often overlooked signature of wildfires. 84 

These wildfire-derived vesicular chars vary in morphology as the plant material undergoes a 85 

plastic deformation phase when rapidly heated; losing cellular structure and generating tar (Cetin 86 

et al., 2005). The volatile matter becomes trapped during combustion and produces bubbles, 87 

which then form irregularly distributed vesicles after devolatilization (Petersen, 1998) (Fig. 1; 88 

Fig. S2). The Late Permian (Fig. 1A-D; Fig. S1), and modern tundra (Fig. 1G-H) vesicular chars 89 

are dense and contain fewer vesicles, possibly indicative of slower volatile release caused by 90 

longer heating durations or lower maximum temperatures reached. Whereas, the boreal forest 91 
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(Fig. 1F) and modern peatland (Fig. 1I-J; Fig. S2I-K) vesicular chars are highly vesiculated, 92 

suggestive of rapid heating, or higher temperatures reached during char formation. Vesicles have 93 

also been observed in low reflecting, hence low temperature chars (Jones et al., 1991), in modern 94 

tundra, peatland and experimentally charred inner bark (Fig. 1G-H; Fig. S2D,E,H) suggesting 95 

that processes other than formation temperature may influence char morphology. For instance, 96 

vesicles observed in charred degraded inner bark (Fig. S2D-G), and charred degraded plant 97 

material from a modern peat bog (Fig. S2J-K), suggest that the type and degree of degradation 98 

may influence the resulting char morphology. The degree of degradation that the original plant 99 

material has undergone prior to charring also prevents determining the original botanical affinity 100 

of these vesicular chars, which may further limit their identification in the fossil record. These 101 

results indicate that vesicular chars may be products of wildfire, irrespective of geological time 102 

interval, vegetation, ecosystem type, or fire behavior. It is likely that differences in morphology 103 

can be attributed to variations in heating temperature and duration, the precursor fuels, and 104 

degree of degradation prior to charring. 105 

DISCUSSION 106 

Late Permian peat-forming environments covered large swathes of Pangaea (now coal 107 

deposits in modern day southeastern Africa, India, Australia, China, Antarctica, South America, 108 

and Russia). Wildfire was a frequent disturbance in these ancient peat-forming environments, as 109 

is evidenced in the fossil record by coeval high fossil charcoal (inertinite) contents (mean 38.9 110 

vol. %) observed in Late Permian coals, compared to modern peats (mean 4.3 vol. %) (Glasspool 111 

and Scott, 2010). The ignition potential of the Permian peat would have been greatly enhanced 112 

due to elevated atmospheric oxygen levels at the time (Belcher et al., 2010; Glasspool and Scott, 113 

2010), resulting in higher temperature fires with more rapid spread rates (Belcher et al., 2010; 114 



Publisher: GSA 
Journal: GEOL: Geology 

Article ID: G35920 

Page 6 of 15 

Hadden et al., 2013), beyond those seen in modern peat fires. These factors may explain why 115 

coals with high inertinite contents, such as those from the Late Permian, contain more vesicular 116 

char (Kwiecińska and Petersen, 2004). 117 

The size of vesicular chars is highly variable and can range from 30 - 900µm 118 

(Kwiecińska and Petersen, 2004), unlike the typical 50µm size observed in Grasby et al. (2011). 119 

Numerous charcoal taphonomy studies have demonstrated that charcoal particle size distribution 120 

can indicate the distance to source; with the microscopic fraction (particles 20–50µm in size) 121 

typically being windborne over long distances (Clark, 1988; Patterson et al., 1987). Moreover, 122 

during periods of enhanced fire activity and/or exceptional fire weather, intense convection from 123 

modern wildfires can transport smoke plumes (particulates and gaseous emissions) to the 124 

stratosphere (Fromm et al., 2000), thus enabling global dispersal of microscopic wildfire-derived 125 

particulates (Fromm et al., 2000); however, these high elevation smoke plumes are typically 126 

latitudinally restricted (Siddaway and Petelina, 2011). If vesicular chars were indeed produced in 127 

Permian peatland wildfires, and assuming that transport behavior of Permian smoke plumes was 128 

analogous to that seen today, in order to transport the char to the Buchanan Lake site the fires 129 

would need to be at a comparable paleolatitude. The predominant Permian paleowind direction 130 

was thought to be Westerly (e.g., Gibbs et al., 2002). This means that paleowildfires occurring in 131 

the extensive peat-forming environments of Angara and Cathaysia could represent viable sources 132 

of this vesicular char.  133 

Our interpretation of vesicular char production in Late Permian wildfires, and the global 134 

transport of wildfire-derived products in high elevation smoke plumes, is further supported by 135 

the occurrence of high concentrations of wildfire-derived black carbon (including charcoal and 136 

soot), and biomass burning-derived polycyclic aromatic hydrocarbons (PAHs), observed in 137 



Publisher: GSA 
Journal: GEOL: Geology 

Article ID: G35920 

Page 7 of 15 

numerous Northern Hemisphere Permian-Triassic boundary sections across Meishan, China, E. 138 

Greenland and the Peace River Basin, Canada (Nabbefeld et al., 2010; Shen et al., 2011). The 139 

latter is ~3000km distant from the documented occurrence of char in the Sverdrup Basin, Canada 140 

(Fig. 1 in Beatty et al. (2008)). These combined lines of evidence suggest that chars observed in 141 

Grasby et al. (2011) could have formed in latest Permian wildfires. 142 

In addition to char occurrence, other chemical signatures have also been associated with 143 

‘fly ash loading events’ (Grasby et al., 2011), such as anomalously high mercury levels (Sanei et 144 

al., 2012). Volcanic emissions account for the majority of modern perturbations in the mercury 145 

cycle and high mercury levels at the Permian-Triassic are likely explained by Siberian Trap 146 

volcanism (Sanei et al., 2012). In addition, vegetation, and peat in particular, have been shown to 147 

strongly bond mercury, causing peat-forming environments to become syngenetically enriched in 148 

mercury (Yudovich and Ketris, 2005). Peak accumulation rates of mercury have also been 149 

directly correlated with volcanic events (Roos-Barraclough et al., 2002). Modern forest fires are 150 

capable of re-emitting substantial quantities of atmospherically deposited mercury to the 151 

atmosphere (Friedli et al., 2009). Within the timeframe of the Permian-Triassic extinction 152 

interval (60 ± 48 ka) (Burgess et al., 2014) it is feasible that volcanic-derived heavy metals and 153 

mercury became sequestered by plants and peat, which then could have been remobilized to the 154 

atmosphere in smoke plumes during subsequent wildfires. 155 

The compelling evidence for widespread wildfire activity throughout the Permian and 156 

leading up to the extinction event, suggest that wildfires may have also contributed a minor 157 

amount to the greenhouse crisis; sustained peat combustion has been shown to increase CO2 158 

emissions significantly enough to generate a pronounced negative δ13C excursion (Finkelstein et 159 

al., 2006), and negative δ13C shifts are noted after each ‘fly ash loading event’ (Grasby et al., 160 
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2011). In order generate the negative δ13C isotope excursion by coal combustion alone modeling 161 

suggests that all of the carbon in 1000 km3 of coal would need to be extracted (Ogden and Sleep, 162 

2012). The extent of coal-magma interaction cannot be verified due to the lack of 163 

metamorphosed coal exposures at the surface therefore we reason that latest Permian chars were 164 

more likely produced by wildfires, and do not represent conclusive evidence for ‘fly ash’ (in 165 

Grasby et al. (2011)). Further, recent work has suggested that methane release from microbial 166 

metabolic activity alone could have generated the δ13C excursion (Rothman et al., 2014). This 167 

combined with the wildfire-derived char evidence casts doubt on the fly ash hypothesis, and 168 

therefore the contribution of coal combustion to the greenhouse crisis at the end Permian 169 

extinction event. 170 
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FIGURE CAPTION 278 

Figure 1. Photomicrographs of vesicular chars. A-D Vesicular chars in Late Permian coals, 279 

Kuznetsk Basin, Siberia. E-F chars extracted from Holocene lake sediments, boreal forest, 280 

Yukon Flats, Alaska, G-H char from a modern tussock tundra fire, Alaska. I-J chars from a 281 

modern peatland fire, Ireland. 282 

1GSA Data Repository item 2014xxx, xxxxxxxx, is available online at 283 

www.geosociety.org/pubs/ft2014.htm, or on request from editing@geosociety.org or Documents 284 

Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 285 
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