22 research outputs found

    Uncovering Disease Mechanisms in a Novel Mouse Model Expressing Humanized APOEε4 and Trem2*R47H.

    Get PDF
    Late-onset Alzheimer\u27s disease (AD; LOAD) is the most common human neurodegenerative disease, however, the availability and efficacy of disease-modifying interventions is severely lacking. Despite exceptional efforts to understand disease progression via legacy amyloidogenic transgene mouse models, focus on disease translation with innovative mouse strains that better model the complexity of human AD is required to accelerate the development of future treatment modalities. LOAD within the human population is a polygenic and environmentally influenced disease with many risk factors acting in concert to produce disease processes parallel to those often muted by the early and aggressive aggregate formation in popular mouse strains. In addition to extracellular deposits of amyloid plaques and inclusions of the microtubule-associated protein tau, AD is also defined by synaptic/neuronal loss, vascular deficits, and neuroinflammation. These underlying processes need to be better defined, how the disease progresses with age, and compared to human-relevant outcomes. To create more translatable mouse models, MODEL-AD (Model Organism Development and Evaluation for Late-onset AD) groups are identifying and integrating disease-relevant, humanized gene sequences from public databases beginning with APOEε4 and Trem2*R47H, two of the most powerful risk factors present in human LOAD populations. Mice expressing endogenous, humanized APOEε4 and Trem2*R47H gene sequences were extensively aged and assayed using a multi-disciplined phenotyping approach associated with and relative to human AD pathology. Robust analytical pipelines measured behavioral, transcriptomic, metabolic, and neuropathological phenotypes in cross-sectional cohorts for progression of disease hallmarks at all life stages. In vivo PET/MRI neuroimaging revealed regional alterations in glycolytic metabolism and vascular perfusion. Transcriptional profiling by RNA-Seq of brain hemispheres identified sex and age as the main sources of variation between genotypes including age-specific enrichment of AD-related processes. Similarly, age was the strongest determinant of behavioral change. In the absence of mouse amyloid plaque formation, many of the hallmarks of AD were not observed in this strain. However, as a sensitized baseline model with many additional alleles and environmental modifications already appended, the dataset from this initial MODEL-AD strain serves an important role in establishing the individual effects and interaction between two strong genetic risk factors for LOAD in a mouse host

    Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study.

    Get PDF
    The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer\u27s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer\u27s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram

    Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study.

    Get PDF
    The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer\u27s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer\u27s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram

    Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study.

    Get PDF
    The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer\u27s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer\u27s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram

    Genotype-phenotype correlation at codon 1740 ofSETD2

    Get PDF
    The SET domain containing 2, histone lysine methyltransferase encoded by SETD2 is a dual-function methyltransferase for histones and microtubules and plays an important role for transcriptional regulation, genomic stability, and cytoskeletal functions. Specifically, SETD2 is associated with trimethylation of histone H3 at lysine 36 (H3K36me3) and methylation of α-tubulin at lysine 40. Heterozygous loss of function and missense variants have previously been described with Luscan-Lumish syndrome (LLS), which is characterized by overgrowth, neurodevelopmental features, and absence of overt congenital anomalies. We have identified 15 individuals with de novo variants in codon 1740 of SETD2 whose features differ from those with LLS. Group 1 consists of 12 individuals with heterozygous variant c.5218C>T p.(Arg1740Trp) and Group 2 consists of 3 individuals with heterozygous variant c.5219G>A p.(Arg1740Gln). The phenotype of Group 1 includes microcephaly, profound intellectual disability, congenital anomalies affecting several organ systems, and similar facial features. Individuals in Group 2 had moderate to severe intellectual disability, low normal head circumference, and absence of additional major congenital anomalies. While LLS is likely due to loss of function of SETD2, the clinical features seen in individuals with variants affecting codon 1740 are more severe suggesting an alternative mechanism, such as gain of function, effects on epigenetic regulation, or posttranslational modification of the cytoskeleton. Our report is a prime example of different mutations in the same gene causing diverging phenotypes and the features observed in Group 1 suggest a new clinically recognizable syndrome uniquely associated with the heterozygous variant c.5218C>T p.(Arg1740Trp) in SETD2

    Several Cancer Susceptibility Variants Also Affect Melanoma Risk

    Get PDF
    <div><p>Background</p><p>Several regions of the genome show pleiotropic associations with multiple cancers. We sought to evaluate whether 181 single-nucleotide polymorphisms previously associated with various cancers in genome-wide association studies were also associated with melanoma risk.</p><p>Methods</p><p>We evaluated 2,131 melanoma cases and 20,353 controls from three studies in the Population Architecture using Genomics and Epidemiology (PAGE) study (EAGLE-BioVU, MEC, WHI) and two collaborating studies (HPFS, NHS). Overall and sex-stratified analyses were performed across studies.</p><p>Results</p><p>We observed statistically significant associations with melanoma for two lung cancer SNPs in the <i>TERT-CLPTM1L</i> locus (Bonferroni-corrected p<2.8x10<sup>-4</sup>), replicating known pleiotropic effects at this locus. In sex-stratified analyses, we also observed a potential male-specific association between prostate cancer risk variant rs12418451 and melanoma risk (OR=1.22, p=8.0x10<sup>-4</sup>). No other variants in our study were associated with melanoma after multiple comparisons adjustment (p>2.8e<sup>-4</sup>).</p><p>Conclusions</p><p>We provide confirmatory evidence of pleiotropic associations with melanoma for two SNPs previously associated with lung cancer, and provide suggestive evidence for a male-specific association with melanoma for prostate cancer variant rs12418451. This SNP is located near <i>TPCN2</i>, an ion transport gene containing SNPs which have been previously associated with hair pigmentation but not melanoma risk. Previous evidence provides biological plausibility for this association, and suggests a complex interplay between ion transport, pigmentation, and melanoma risk that may vary by sex. If confirmed, these pleiotropic relationships may help elucidate shared molecular pathways between cancers and related phenotypes.</p></div

    Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study

    Get PDF
    The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer’s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer’s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram, in vivo imaging, biochemical characterization, and behavioral assessments. The data from this study is publicly available through the AD Knowledge Portal

    Supporting shared decision making for older people with multiple health and social care needs: a realist synthesis

    Get PDF
    Background: Health care systems are increasingly moving towards more integrated approaches. Shared decision making (SDM) is central to these models but may be complicated by the need to negotiate and communicate decisions between multiple providers, as well as patients and their family carers; particularly for older people with complex needs. The aim of this review was to provide a context relevant understanding of how interventions to facilitate SDM might work for older people with multiple health and care needs, and how they might be applied in integrated care models. Methods: Iterative, stakeholder driven, realist synthesis following RAMESES publication standards. It involved: 1) scoping literature and stakeholder interviews (n-13) to develop initial programme theory/ies, 2) systematic searches for evidence to test and develop the theories, and 3) validation of programme theory/ies with stakeholders (n=11). We searched PubMed, The Cochrane Library, Scopus, Google, Google Scholar, and undertook lateral searches. All types of evidence were included. Results: We included 88 papers; 29 focused on older people or people with complex needs. We identified four context-mechanism-outcome configurations that together provide an account of what needs to be in place for SDM to work for older people with complex needs. This includes: understanding and assessing patient and carer values and capacity to access and use care, organising systems to support and prioritise SDM, supporting and preparing patients and family carers to engage in SDM and a person-centred culture of which SDM is a part. Programmes likely to be successful in promoting SDM are those that allow older people to feel that they are respected and understood, and that engender confidence to engage in SDM. Conclusions: To embed SDM in practice requires a radical shift from a biomedical focus to a more person-centred ethos. Service providers will need support to change their professional behaviour and to better organise and deliver services. Face to face interactions, permission and space to discuss options, and continuity of patient-professional relationships are key in supporting older people with complex needs to engage in SDM. Future research needs to focus on inter-professional approaches to SDM and how families and carers are involved
    corecore