19 research outputs found

    Use of a Sendai virus-based vector for effcient transduction of pinniped fbroblasts

    Get PDF
    Generation of induced pluripotent stem (iPS) cells expanded possibilities of pluripotency and early development studies. Generation of order Carnivora iPS cells from dog (Canis lupus familiaris), snow leopard (Panthera uncia), and American mink (Neovison vison) was previously reported. The aim of the current study was to examine conditions of pinniped fbroblast reprogramming. Pinnipeds are representatives of the suborder Caniformia sharing conservative genomes. There are several ways to deliver reprogramming transcription factors: RNA, proteins, plasmids, viral vectors etc. The most effective delivery systems for mouse and human cells are based on viral vectors. We compared a lentiviral vector which integrates into the genome and a Sendai virus­based vector, CytoTune EmGFP Sendai Fluorescence Reporter. The main advantage of Sendai virus­based vectors is that they do not integrate into the genome. We performed delivery of genetic constructions carrying fluorescent proteins to fbroblasts of seven Pinnipeds: northern fur seal (Callorhinus ursinus), Steller sea lion (Eumetopias jubatus), walrus (Odobenus rosmarus), bearded seal (Erignathus barbatus), Baikal seal (Pusa sibirica), ringed seal (Phoca hispida), and spotted seal (Phoca largha). We also transduced American mink (N. vison), human (Homo sapiens), and mouse (Mus musculus) fbroblasts as a control. We showed that the Sendai virus­based transduction system provides transgene expression one­two orders of magnitude higher than the lentiviral system at a comparable multiplicity of infection. Also, transgene expression after Sendai virus­based transduction is quite stable and changes only slightly at day four compared to day two. These data allow us to suggest that Sendai virus­based vectors are preferable for generation of Pinniped iPS cells

    X Chromosome Evolution in Cetartiodactyla

    Get PDF
    The mammalian X chromosome is characterized by high level of conservation. On the contrary the Cetartiodactyl X chromosome displays variation in morphology and G-banding pattern. It is hypothesized that X chromosome has undergone multiple rearrangements during Cetartiodactyla speciation. To investigate the evolution of this sex chromosome we have selected 26 BAC clones from cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution maps were obtained by fluorescence in situ hybridisation in a representative range of cetartiodactyl species from different families: pig (Suidae), gray whale (Eschrichtiidae), pilot whale (Delphinidae), hippopotamus (Hippopotamidae), Java mouse deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), giraffe (Giraffidae). To trace the X chromosome evolution during fast radiation in speciose families, we mapped more than one species in Cervidae (moose, Siberian roe deer, fallow deer and Pere David’s deer) and Bovidae (musk ox, goat, sheep, sable antelope, nilgau, gaur, saola, and cattle). We have identified three major conserved synteny blocks and based on this data reconstructed the structure of putative ancestral cetartiodactyl X chromosome. We demonstrate that intrachromosomal rearrangements such as inversions and centromere reposition are main drivers of cetartiodactyl’s chromosome X evolution

    X Chromosome Evolution in Cetartiodactyla

    Get PDF
    The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David’s deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups

    Phylogenomics of the dog and fox family (Canidae, Carnivora) revealed by chromosome painting

    No full text
    Canid species (dogs and foxes) have highly rearranged karyotypes and thus represent a challenge for conventional comparative cytogenetic studies. Among them, the domestic dog is one of the best-mapped species in mammals, constituting an ideal reference genome for comparative genomic study. Here we report the results of genome-wide comparative mapping of dog chromosome-specific probes onto chromosomes of the dhole, fennec fox, and gray fox, as well as the mapping of red fox chromosome-specific probes onto chromosomes of the corsac fox. We also present an integrated comparative chromosome map between the species studied here and all canids studied previously. The integrated map demonstrates an extensive conservation of whole chromosome arms across different canid species. In addition, we have generated a comprehensive genome phylogeny for the Canidae on the basis of the chromosome rearrangements revealed by comparative painting. This genome phylogeny has provided new insights into the karyotypic relationships among the canids. Our results, together with published data, allow the formulation of a likely Canidae ancestral karyotype (CAK, 2n=82), and reveal that at least 6-24 chromosomal fission/fusion events are needed to convert the CAK karyotype to that of the modern canids

    De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus

    Get PDF
    Background: Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. Results: In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. Conclusions: This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions

    Tracking genome organization in rodents by Zoo-FISH

    No full text
    The number of rodent species examined by modern comparative genomic approaches, particularly chromosome painting, is limited. The use of human whole-chromosome painting probes to detect regions of homology in the karyotypes of the rodent index species, the mouse and rat, has been hindered by the highly rearranged nature of their genomes. In contrast, recent studies have demonstrated that non-murid rodents display more conserved genomes, underscoring their suitability for comparative genomic and higher-order systematic studies. Here we provide the first comparative chromosome maps between human and representative rodents of three major rodent lineages Castoridae, Pedetidae and Dipodidae. A comprehensive analysis of these data and those published for Sciuridae show (1) that Castoridae, Pedetidae and Dipodidae form a monophyletic group, and (2) that the European beaver Castor fiber (Castoridae) and the birch mouse Sicista betulina (Dipodidae) are sister species to the exclusion of the springhare Pedetes capensis (Pedetidae), thus resolving an enduring trifurcation in rodent higher-level systematics. Our results together with published data on the Sciuridae allow the formulation of a putative rodent ancestral karyotype (2n=50) that is thought to comprise the following 26 human chromosomal segments and/or segmental associations: HSA1pq, 1q/10p, 2pq, 2q, 3a, 3b/19p, 3c/21, 4b, 5, 6, 7a, 7b/16p, 8p/4a/8p, 8q, 9/11, 10q, 12a/22a, 12b/22b, 13, 14/15, 16q/19q, 17, 18, 20, X and Y. These findings provide insights into the likely composition of the ancestral rodent karyotype and an improved understanding of placental genome evolution

    De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus

    No full text
    Abstract Background Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a “living fossil”. It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. Results In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. Conclusions This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions
    corecore