
1 
 

De novo assembling and primary analysis of genome and transcriptome of grey whale 1 

Eschrichtius robustus 2 

 3 

Alexey Moskalev1,2,*, Anna Kudryavtseva1, Alexander Grafodatsky3, Violetta R. Beklemisheva3, 4 

Natalya A. Serdyukova3, Konstantin V. Krutovsky4-7, Ivan V. Kulakovsky1,5,8, Andrey S. 5 

Lando5, Artem S. Kasianov5, Anastasia Snezhkina1, Dmitry Kuzmin6, Julia Putintseva6, Sergey 6 

Feranchuk9, Mikhail Shaposhnikov2, Vadim Fraifeld10, Mitya Toren10, Vasily Sitnik8 7 

 8 

* Correspondence: amoskalev@list.ru 9 

1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, 10 

Russian Federation 11 

2Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, 12 

Russian Federation 13 

3Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russian Federation 14 

4Department of Forest Genetics and Forest Tree Breeding, Georg-August University of 15 

Göttingen, 37077 Göttingen, Germany 16 

5N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, 17 

Russian Federation 18 

6Genome Research and Education Center, Siberian Federal University, 660036 Krasnoyarsk, 19 

Russian Federation 20 

7Department of Ecosystem Science and Management, Texas A&M University, College Station, 21 

TX 77843-2138, USA 22 

8Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, 143026, 23 

Russian Federation 24 

9Irkutsk National Research Technical University, 664074 Irkutsk, Russian Federation 25 

10Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel 26 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Siberian Federal University Digital Repository

https://core.ac.uk/display/220103822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 
 1 
Abstract 2 

Background 3 

Gray whale Eschrichtius robustus is a single member of the family Eschrichtiidae. Eschrichtiidae 4 

is considered to be the most primitive, and this species is described as "living fossils".  5 

Results 6 

In this work we for the first time made de novo assembling and primary analysis of E. robustus 7 

genome and transcriptome of kidney and liver. To date, the completeness of the draft genome 8 

assembly is about 24%. However, 10895 genes were found due to bioinformatic analysis. 9 

Analysis of the transcriptome revealed an increased level of expression of DNA repair and 10 

hypoxia-response genes, which is typical for whales. 11 

Conclusions 12 

Further study of the genome and transcriptome of the gray whale will allow us to better 13 

understand the ways of the evolution of whales and the mechanisms of their adaptation to 14 

deepwater conditions of life. 15 

 16 

Keywords 17 
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 19 

Background 20 

Gray whales, Eschrichtius robustus (Lilljeborg, 1861), are the single member of the family 21 

Eschrichtiidae. Escrichtidae is one of four families in the suborder Mysticeti (with the 22 

Balaenidae, Neobalaenidae and Balaenopteridae). Of these groups, Eschrichtiidae is considered 23 

to be the most primitive. Gray whales have been described as "living fossils" because of their 24 

short, coarse baleen plates and their lack of a dorsal fin [1].  25 

In this work we for the first time made de novo assembling and primary analysis of E. robustus 26 

genome and transcriptome of kidney and liver.  27 
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 1 

Methods 2 

Animal samples 3 

The animals were caught by hunters of the indigenous population of Chukotka Autonomous 4 

Okrug (Mechigmen bay of the Bering Sea, Lorino) who have permission to hunt this species for 5 

food. Tissue biopsies were taken at the time of aboriginal hunting; no animals were killed 6 

specifically for this study. 7 

 8 

Nucleic acid extraction 9 

Genomic DNA was isolated using phenol-chloroform extraction by standard molecular biology 10 

techniques. dsDNA was quantified on the Qubit 2.0 Fluorometer (Thermo Fisher Scientific, 11 

USA) with the Qubit Broad Range dsDNA kit (Thermo Fisher Scientific, USA), and DNA 12 

quality assessment was performed by electrophoresis in 0.6% agarose gel. Only high-quality 13 

DNA with greater than 50 kb in size was used for library preparation. 14 

Total RNA was isolated from liver and kidney tissues using RNeasy Mini Kit (Qiagen, 15 

Germany) according to the manufacturer’s protocol. RNA quantification was performed on the 16 

NanoDrop 1000 (NanoDrop Technologies, USA), and RNA integrity number (RIN) was 17 

assessed via the Agilent 2100 Bioanalyzer (Agilent Technologies, USA). RNA was further 18 

threated with DNase I (Thermo Fisher Scientific, USA) and purified using RNA Clean & 19 

Concentrator-5 kit (Zymo Research, USA). 20 

 21 

Whole genome sequencing 22 

Three genomic DNA libraries were constructed with fragment sizes 5 Kb and 10 Kb using 23 

Nextera Mate Pair Library Prep Kit (Illumina, USA) and insert average size 300 bp with TruSeq 24 

DNA Library Prep Kit LT (Illumina, USA) according to the manufacturer’s recommendations. 25 
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Whole genome sequencing was performed in Genotek (Moscow, Russia) on the Illumina HiSeq 1 

2500 (USA) under the 2 × 100 bp paired-end model. 2 

 3 

Transcriptome sequencing 4 

Preparation of cDNA libraries was performed using Illumina TruSeq RNA Sample Preparation 5 

Kit v2 (LT protocol) as described [2]. The libraries were sequenced on the Illumina MiSeq 6 

System (USA) with corresponding MiSeq Reagent Kit v2 (500 cycle) chemistry. Illumina 7 

sequencing was carried out in EIMB RAS “Genome” center (Moscow, Russia). 8 

 9 

Genome assembly 10 

The software package CLC Assembly Cell (QIAGEN Bioinformatics, USA) was used for 11 

genome assembly. Three types of libraries were used (Table 1). 12 

 13 

Genome annotation 14 

The annotation was carried out using a set of software packages and databases (Additional file 15 

1). The primary model for marking the position of genes was obtained by the BUSCO package 16 

[3] (Additional file 2). A subset of 3023 groups for Vertebrata was considered. For the detection 17 

of genes the AUGUSTUS package [4] with the initial model "human" (H. sapiens) was used 18 

(Additional file 3). The masking was performed with the RepeatMasker package [5] using 19 

RepBase repeats libraries [6] and Dfam [7]. Annotation was carried out with scripts based on the 20 

funannotate pipeline [8]. 21 

The protein and transcriptomic hints for marking the position of genes were used also. Protein 22 

hints were obtained using the Exonerate package [9] (with the appropriate funannotate wrapper) 23 

and the protein sequences database SwissProt [10] (for Vertebrata) as well as the protein 24 

sequences from the minke whale and bowhead whale assemblies (Additional file 2). 25 

Transcriptomic hints were obtained using the blat tool [11] and with the provided transcriptome 26 
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assembly. The primary locations of genes obtained using AUGUSTUS was reformatted using the 1 

EVidence Modeller package [12] (with the appropriate funannotate wrapper). The finalization of 2 

the primary position of genes was carried out using the funannotate pipeline. In total, the primary 3 

annotation found 152339 CDS from 43456 parts of genes. 4 

 5 

Functional annotation 6 

Search for tRNA genes in genomic sequence was performed with tRNAscan-SE program [13]. 7 

The predicted variants with score above 30, not pseudo, and not undetermined were selected to 8 

the final annotation. As a result, the final annotation included 2826 predicted tRNAs.  9 

Functional annotation was started by the funnannotate pipeline with disabled annotation by 10 

InterPro resource [14, 15]. An annotation was made with the SwissProt protein sequence 11 

database [10], Pfam protein families database [16], eggNOG database [17], MEROPS peptidase 12 

database [18], and BUSCO families [3]. If protein sequence for the gene was not found in 13 

SwissProt, a search for homologues among model mammals in the NCBI Landmark database 14 

was conducted. 15 

Then the filtering stage of the marked genes followed. At this stage, only genes with clarified 16 

descriptions in SwissProt/NCBI Landmark were selected. One top hit was considered for each 17 

marked gene. The total number of unfiltered fragments was 28260, unique hits – 18261, with one 18 

hit – 12411. On the average the one hit had 1.5 gene fragments, and fragmented genes were 19 

divided into 2.7 parts. The tRNA genes were not filtered. 20 

At filtering stage found genes were selected when more than 30% of the hit from the database 21 

were covered by the gene with identity above 60%, and the hit from the database covered more 22 

than 60% of the gene. If several genes were found from the database in the same hit, the longest 23 

variant was selected. If the top hits for different parts had different IDs (homologues from 24 

different organisms), this approach admits annotation of different parts of the same gene, as 25 

different genes. Unfortunately, this approach is strongly biased, reduces completeness, does not 26 
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allow to reveal duplications, but allowed to follow some limitations on the number and quality of 1 

gene marking. After filtering, funannotate pipeline was started again with the annotation by 2 

InterPro and GO terms (Table 3, Additional file 4). 3 

 4 

Phylogenetics 5 

Phylogenetic tree restoration was performed on the basis of multiple alignment for 322 groups of 6 

single-copy orthologous genes, found by the BUSCO methodology, for 16 organisms obtained 7 

from the NCBI and Ensembl repositories [19] (Additional file 5). The corresponding protein 8 

sequences and CDS for 5152 genes were aligned. 9 

The search for single-copy orthologs was carried out using BUSCO [3]. For the genes 10 

represented by several transcripts, only one transcript (with protein product) was selected with 11 

the largest BUSCO score. The genes that in all considered genomes have one copy (“complete”, 12 

in terms of BUSCO) were selected for analysis. 13 

The CDS corresponding to the selected 322 gene groups was aligned using the MAFFT program 14 

[20] in the E-INS-i mode, focused on the quality of alignment (with the parameters --ep 0 --15 

genafpair - maxiterate 2000). The resulting alignments were processed by the GBlocks program 16 

[21] and glued together into one long sequence. The total length of the sequences for the 17 

phylogenetic analysis for CDS was 252,271 base pairs. 18 

The consensus phylogenetic tree was constructed using RAxML [22] with the GTRGAMMAI 19 

model. To estimate the convergence of the bootstrapping the autoMRE criterion (extended 20 

majority rule consensus tree criterion) was used. The tree of species divergence was constructed 21 

by BEAST package [23] with the HKY+Gamma model.The a priori restrictions on divergence 22 

times [24] are given in Additional file 6. 23 

 24 

Comparison of transcriptome assemblies 25 
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In our comparative analysis we used the published whale transcriptome and genome data [25-1 

27]. The details are provided in the Additional file 7. To map transcriptome contigs against 2 

genome CDS and Alaska bowhead whale transcriptome we used best hits of blast (executed with 3 

default parameters) [28]. 4 

 5 

Annotation of the obtained gray whale transcriptome assembly and differential gene 6 

expression analysis 7 

We used TransDecoder to predict ORFs in assembled contigs and Trinotate [29, 30] to annotate 8 

ORFs based on similarity to known orthologous genes. The complete resulting annotation is 9 

provided in the Additional file 8, the predicted ORFs are included as an Additional file 9. 10 

To assess gene expression we mapped transcriptome reads of several whale transcriptomes using 11 

the gray whale transcriptome assembly as the reference. The reads were trimmed with sickle [31] 12 

and cutadapt [32] and mapped using bowtie2 [33] to all contigs carrying ORFs predictions.  13 

The mappings in unpaired mode were quite good with nearly 90% of the gray whale reads 14 

successfully mapped (80% for minke whale and bowhead whale reads). The mapping in paired 15 

mode showed lower but reasonable success rate (70% for gray whale and more than 50% for 16 

bowhead and minke whale data). The unpaired mappings were then used for read counting and 17 

gene expression analysis to reduce loss of information. The mappings statistics are given in the 18 

Additional file 10. 19 

The read counting was performed with HTSeq [34]. Complete read counts are given in the 20 

Additional file 11, the distribution of read counts per contig is provided in Additional file 12. 21 

Differential expression was assessed with edgeR [35]. One count-per-million expression 22 

threshold was used to select the set of reliably expressed transcripts, only 10% of chimeric 23 

contigs (with two or more predicted ORFs) passed this expression threshold. The GO enrichment 24 

analysis was performed with the Fisher’s exact test. 25 

 26 
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Results and discussion  1 

 2 

Draft whole genome sequence assembly and annotation 3 

A whole-genome shotgun sequence approach was used to the genome assembly of the gray 4 

whale (E. robustus). The liver and kidney transcriptomes were also sequenced and assembled. 5 

Approximately 43 Gb (coverage of 17.7×) genome data were generated. The Illumina PE paired-6 

end reads library with reads length 75 bp and Illumina MP mate pair libraries with insert sizes 5 7 

Kb and 10 Kb were sequenced for genome assembly (Table 1). The draft assembly with CLC 8 

Assembly Cell (QIAGEN Bioinformatics, USA) software package produced a total of 1779905 9 

scaffolds with an N50 of 10.5 Kb and 2185115 contigs with an N50 of 2.51 Kb (Table 2). 10 

The data of the transcriptome assembly were used for the genome annotation. The primary 11 

assessment of genome assembly was carried out using the BUSCO methodology [3]. The 12 

number, fragmentation and duplication level of unique orthologs from the different species were 13 

evaluated. The genome assemblies of minke whale (Balaenoptera acutorostrata scammoni), 14 

bowhead whale (Balaena mysticetus), and Antarctic minke whale (Balaenoptera bonaerensis) 15 

were used for comparison (Additional files 2 and 3). 16 

Based on the primary analysis, the expected number of completely reconstituted genes (including 17 

duplicated) is about 24%. Apparently, this is due to the relatively small N50 for scaffolds (and 18 

small N50 for contigs), comparable (and less, respectively) from the median length for genes in 19 

related species (~ 9.3 Kb for minke whale) (Additional file 3). 20 

Known repeats and sequences with low complexity make up about 24.79% of the entire 21 

assembly (745.37 Mb) (Table 3, Methods). Despite the fragmentation of the assembly (152339 22 

CDS from 43456 parts of genes were found initially), the use of the filtration procedure, in 23 

which contigs with the longest gene fragments were selected (see Methods), allowed to mark 24 

10895 genes (56838 CDS) (Table 3, Additional file 4). 25 

 26 
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Phylogenetics 1 

Phylogenetic trees were reconstructed on the basis of multiple alignment for 322 groups of 2 

single-copy orthologous genes from 16 organisms (Additional file 5). Single-copy "complete" 3 

groups were selected in terms of the BUSCO methodology. Figure 1 shows a phylogenetic tree 4 

obtained from multiple alignments of examined groups of protein sequences. Despite the 5 

insignificant completeness of the genome (about 25% complete by BUSCO, see Additional file 6 

3), the used approach allowed the construction of a fairly plausible tree for groups of protein 7 

sequences, keeping the dense of Cetacea cluster. Figure 2 shows a tree of species divergence 8 

obtained by multiple alignments of CDS. The used a priori limitations on divergence times [24] 9 

are given in Additional file 6. Unfortunately, because of the incompleteness of the draft 10 

assembly, there are some deviations in the estimates of the species divergence time from the 11 

median estimates given in TimeTree resource [24]. At the same time, the estimated divergence 12 

time of O. orca and E. robustus (34.1, CI: (32.0 - 36.1) MYA) slightly differs from the median 13 

time (34.4 CI: (30.6 - 35.5 MYA)) given on the same resource. 14 

 15 

The produced gray whale transcriptome assembly provides a better representation of the 16 

whale transcriptome compared to previously published data 17 

We have performed compared the gray whale transcriptome assembly (114233 contigs) to the 18 

transcriptome assemblies (423657 and 1059024 contigs) and genome CDS annotation (22677 19 

CDSs) of the bowhead whale [25]. 20 

The genome CDS annotation contains only nearly 20 thousands of records, which is dramatically 21 

different from over a million of transcriptome contigs of the Greenland bowhead whale 22 

transcriptome. The total number of contigs of the gray whale transcriptome assembly is ten times 23 

smaller and with N50 value being reasonably closer to that of the genomics CDSs. This suggests 24 

the produced assembly has less ‘false positive’ and lower number of redundant contigs. To 25 

support this statement, we mapped all tested transcriptomes against bowhead whale genome 26 
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CDS, as well as Greenland bowhead whale and gray whale transcriptomes against the middle-1 

sized Alaska bowhead whale transcriptome. Indeed, in both tests the mapping showed 2-10 times 2 

higher fraction of mapped contigs for the gray whale transcriptome (Additional file 7). 3 

Furthermore, the absolute number of reliably mapped contigs and genome CDSs covered by 4 

transcriptome contigs’ hits were similar for all three tested transcriptome assemblies, which is 5 

surprising giving dramatically smaller total size of the gray whale transcriptome assembly. Inter-6 

transcriptome mapping also supports this observation (Additional file 10). 7 

 8 

Consistent gene expression across different whale transcriptome samples supports 9 

reliability of the genome annotation 10 

To comparatively assess gene expression profiles in kidney and liver of the gray whale we 11 

performed standard gene expression analysis using the de novo assembled transcriptome as the 12 

reference. The gene expression was generally stable in the same organs of different whale 13 

species, with the DNA repair and hypoxia-response genes being especially robustly expressed. 14 

Next, we performed the gene ontology (GO) enrichment analysis for genes specifically 15 

upregulated in the gray whale transcriptome (against minke and bowhead whale data). There 16 

were only few genes specifically expressed in gray whale kidney sample and the GO analysis did 17 

not show any significant or relevant enrichment. However, GO enrichment of liver data found 18 

multiple GO terms enriched (see Additional files 12 and 13), probably linked to the xenobiotic 19 

stress response. This might reflect the specific biological state of the studies specimens. 20 

 21 

Conclusions 22 

Thus, we made de novo assembling and primary analysis of gray whale (E. robustus) genome 23 

and transcriptome of kidney and liver. According the estimating by BUSCO methodology the 24 

completeness of the draft genome assembly is about 24%. After filtration procedure 10895 genes 25 

were found. The repeats make up about 24.79% of the entire assembly. The transcriptome 26 
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analysis revealed robust expression of DNA repair and hypoxia-response genes, that is consistent 1 

with the adaptation of whales to deep diving. The gene ontology  2 

 enrichment analysis demonstrated upregulation of genes related to xenobiotic stress response in 3 

the gray whale liver. This can be due to both the habitat conditions and the physiological state of 4 

the individual. Further study of the genome and transcriptome of the gray whale  5 

may be useful for understanding the evolution of whales and the mechanisms of adaptation to 6 

deepwater conditions. 7 

 8 
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Figure legends 1 

 2 

Fig. 1 Phylogenetic tree for groups of protein sequences. Phylogenetic tree, built on 322 groups 3 

of single-copy orthologous genes. The length of the edges denotes the number of substitutions 4 

per site. The bootstrap value for all nodes is 100. 5 

 6 

Fig. 2 Tree of species divergence was obtained by multiple alignments for CDS. A priori 7 

restrictions on divergence times  were used (Additional file 6). The values of the discrepancy 8 

time and 95% confidence intervals are shown at nodes. 9 
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Tables 1 
 2 

Table 1 Libraries sequenced for the genome assembly 3 

Library Reads length (bp) Number of reads (pairs) 

Illumia PE 75 39011360 

Illumina MP (insert size 5 kb) 100 200299976 

Illumina MP (insert size10 
kb) 

100 175370211 

 4 

Table 2 Main statistics of the genome assembly 5 

Stats for Total number N50 (Kb) Longest (Kb) Size (Gb) 

Contig 2185115 2.51 45.5 2.091 

Scaffolds 1779905 10.5 125.01 3.006 (~30% 
N/X) 

 6 

Table 3 Statistics of the genome functional annotation 7 

Stats for Number Percentage of genome 

Repeats 3894603 24.79 

Genes (not include tRNA) 10895 2.2255 

СDS (not include tRNA) 56,838 0.3461 

tRNA 2826 0.0067 

 8 


