19 research outputs found

    Leflunomide/hydroxychloroquine combination therapy targets type I IFN-associated proteins in patients with Sjögren's syndrome that show potential to predict and monitor clinical response

    Get PDF
    OBJECTIVES: To assess to what extent leflunomide (LEF) and hydroxychloroquine (HCQ) therapy in patients with primary Sjögren's syndrome (RepurpSS-I) targets type I IFN-associated responses and to study the potential of several interferon associated RNA-based and protein-based biomarkers to predict and monitor treatment. METHODS: In 21 patients treated with LEF/HCQ and 8 patients treated with placebo, blood was drawn at baseline, 8, 16 and 24 weeks. IFN-signatures based on RNA expression of five IFN-associated genes were quantified in circulating mononuclear cells and in whole blood. MxA protein levels were measured in whole blood, and protein levels of CXCL10 and Galectin-9 were quantified in serum. Differences between responders and non-responders were assessed and receiver operating characteristic analysis was used to determine the capacity of baseline expression and early changes (after 8 weeks of treatment) in biomarkers to predict treatment response at the clinical endpoint. RESULTS: IFN-signatures in peripheral blood mononuclear cell and whole blood decreased after 24 weeks of LEF/HCQ treatment, however, changes in IFN signatures only poorly correlated with changes in disease activity. In contrast to baseline IFN signatures, baseline protein concentrations of galectin-9 and decreases in circulating MxA and Galectin-9 were robustly associated with clinical response. Early changes in serum Galectin-9 best predicted clinical response at 24 weeks (area under the curve 0.90). CONCLUSIONS: LEF/HCQ combination therapy targets type-I IFN-associated proteins that are associated with strongly decreased B cell hyperactivity and disease activity. IFN-associated Galectin-9 is a promising biomarker for treatment prediction and monitoring in pSS patients treated with LEF/HCQ.</p

    Pre-existing virus-specific CD8+ T-cells provide protection against pneumovirus-induced disease in mice

    Get PDF
    Pneumoviruses such as pneumonia virus of mice (PVM), bovine respiratory syncytial virus (bRSV) or human (h)RSV are closely related pneumoviruses that cause severe respiratory disease in their respective hosts. It is well-known that T-cell responses are essential in pneumovirus clearance, but pneumovirus-specific T-cell responses also are important mediators of severe immunopathology. In this study we determined whether memory- or pre-existing, transferred virus-specific CD8 + T-cells provide protection against PVM-induced disease. We show that during infection with a sublethal dose of PVM, both natural killer (NK) cells and CD8 + T-cells expand relatively late. Induction of CD8 + T-cell memory against a single CD8 + T-cell epitope, by dendritic cell (DC)-peptide immunization, leads to partial protection against PVM challenge and prevents Th2 differentiation of PVM-induced CD4 T-cells. In addition, adoptively transferred PVM-specific CD8 + T-cells, covering the entire PVM-specific CD8 + T-cell repertoire, provide partial protection from PVM-induced disease. From these data we infer that antigen-specific memory CD8 + T-cells offer significant protection to PVM-induced disease. Thus, CD8 + T-cells, despite being a major cause of PVM-associated pathology during primary infection, may offer promising targets of a protective pneumovirus vaccine

    Pathogenic characteristics of persistent feline enteric coronavirus infection in cats

    Get PDF
    Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed

    Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis

    Get PDF
    Abstract Objective MicroRNAs (miRNAs) are regulatory molecules, which have been addressed as potential biomarkers and therapeutic targets in rheumatic diseases. Here, we investigated the miRNA signature in the serum of systemic sclerosis (SSc) patients and we further assessed their expression in early stages of the disease. Methods The levels of 758 miRNAs were evaluated in the serum of 26 SSc patients as compared to 9 healthy controls by using an Openarray platform. Three miRNAs were examined in an additional cohort of 107 SSc patients and 24 healthy donors by single qPCR. MiR-483-5p expression was further analysed in the serum of patients with localized scleroderma (LoS) (n = 22), systemic lupus erythematosus (SLE) (n = 33) and primary Sjogren's syndrome (pSS) (n = 23). The function of miR-483-5p was examined by transfecting miR-483-5p into primary human dermal fibroblasts and pulmonary endothelial cells. Results 30 miRNAs were significantly increased in patients with SSc. Of these, miR-483-5p showed reproducibly higher levels in an independent SSc cohort and was also elevated in patients with preclinical-SSc symptoms (early SSc). Notably, miR-483-5p was not differentially expressed in patients with SLE or pSS, whereas it was up-regulated in LoS, indicating that this miRNA could be involved in the development of skin fibrosis. Consistently, miR-483-5p overexpression in fibroblasts and endothelial cells modulated the expression of fibrosis-related genes. Conclusions Our findings showed that miR-483-5p is up-regulated in the serum of SSc patients, from the early stages of the disease onwards, and indicated its potential function as a fine regulator of fibrosis in SSc

    CXCL4 is a driver of cytokine mRNA stability in monocyte-derived dendritic cells

    No full text
    The chemokine CXCL4 has been implicated in several immune diseases. Exposure of monocyte-derived dendritic cells (moDCs) to CXCL4 potentiates the production of inflammatory cytokines in the presence of TLR3 or TLR7/8 agonists. Here we investigated the transcriptional and post-transcriptional events underlying the augmented inflammatory responses in CXCL4-moDCs. Our results indicate that CXCL4-moDCs display an increased expression and secretion of IL-12, IL-23, IL-6 and TNF upon TLR3 activation. Analysis of the cytokine transcripts for the presence of AU-rich elements (ARE), motifs necessary for ARE-mediated mRNA decay, revealed that all these cytokine transcripts are, at least in silico, possibly regulated at the level of mRNA stability. In vitro assays confirmed that mRNA stability of IL6 and TNF, but not IL12B and IL23A, is increased in CXCL4-moDCs. We next screened the expression of ARE-binding proteins (ARE-BPs) and found that TLR stimulation of CXCL4-moDCs induced tristetraprolin (TTP or ZFP36). Increased TTP mRNA expression was found to be a consequence of TTP phospho-mediated inactivation, which over time causes the protein to degrade its own mRNA. Concomitantly with TTP inactivation, we observed increased MAPK p38 signalling, upstream of TTP, in stimulated CXCL4-moDCs. P38 inhibition restored TTP activation and subsequently reduced the production of inflammatory cytokines. Finally, TTP knockdown in moDCs resulted in an increased production of IL6 and TNF after TLR stimulation. Overall, our study shows that the pro-inflammatory phenotype of CXCL4-moDCs relies in part on enhanced cytokine mRNA stability dictated by TTP inactivation

    CXCL4 is a driver of cytokine mRNA stability in monocyte-derived dendritic cells

    No full text
    The chemokine CXCL4 has been implicated in several immune diseases. Exposure of monocyte-derived dendritic cells (moDCs) to CXCL4 potentiates the production of inflammatory cytokines in the presence of TLR3 or TLR7/8 agonists. Here we investigated the transcriptional and post-transcriptional events underlying the augmented inflammatory responses in CXCL4-moDCs. Our results indicate that CXCL4-moDCs display an increased expression and secretion of IL-12, IL-23, IL-6 and TNF upon TLR3 activation. Analysis of the cytokine transcripts for the presence of AU-rich elements (ARE), motifs necessary for ARE-mediated mRNA decay, revealed that all these cytokine transcripts are, at least in silico, possibly regulated at the level of mRNA stability. In vitro assays confirmed that mRNA stability of IL6 and TNF, but not IL12B and IL23A, is increased in CXCL4-moDCs. We next screened the expression of ARE-binding proteins (ARE-BPs) and found that TLR stimulation of CXCL4-moDCs induced tristetraprolin (TTP or ZFP36). Increased TTP mRNA expression was found to be a consequence of TTP phospho-mediated inactivation, which over time causes the protein to degrade its own mRNA. Concomitantly with TTP inactivation, we observed increased MAPK p38 signalling, upstream of TTP, in stimulated CXCL4-moDCs. P38 inhibition restored TTP activation and subsequently reduced the production of inflammatory cytokines. Finally, TTP knockdown in moDCs resulted in an increased production of IL6 and TNF after TLR stimulation. Overall, our study shows that the pro-inflammatory phenotype of CXCL4-moDCs relies in part on enhanced cytokine mRNA stability dictated by TTP inactivation

    Circulating small non-coding RNAs reflect IFN status and B cell hyperactivity in patients with primary Sjögren’s syndrome

    Get PDF
    Background Considering the important role of miRNAs in the regulation of post–transcriptional expression of target genes, we investigated circulating small non-coding RNAs (snc)RNA levels in patients with primary Sjögren’s syndrome (pSS). In addition we assessed if serum sncRNA levels can be used to differentiate patients with specific disease features. Methods Serum RNA was isolated from 37 pSS patients as well as 21 patients with incomplete Sjögren’s Syndrome (iSS) and 17 healthy controls (HC) allocated to two independent cohorts: discovery and validation. OpenArray profiling of 758 sncRNAs was performed in the discovery cohort. Selected sncRNAs were measured in the validation cohort using single-assay RT-qPCR. In addition, unsupervised hierarchical clustering was performed within the pSS group. Results Ten sncRNAs were differentially expressed between the groups in the array. In the validation cohort, we confirmed the increased expression of U6-snRNA and miR-661 in the iSS group as compared to HC. We were unable to validate differential expression of any miRNAs in the pSS group. However, within this group several miRNAs correlated with laboratory parameters. Unsupervised clustering distinguished three clusters of pSS patients. Patients in one cluster showed significantly higher serum IgG, prevalence of anti-SSB autoantibodies, IFN-score, and decreased leukocyte counts compared to the two other clusters. Conclusion We were unable to identify any serum sncRNAs with differential expression in pSS patients. However, we show that circulating miRNA levels are associated with disease parameters in pSS patients and can be used to distinguish pSS patients with more severe B cell hyperactivity. As several of these miRNAs are implicated in the regulation of B cells, they may play a role in the perpetuation of the disease
    corecore