20 research outputs found

    Gene expression analysis of flax seed development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flax, <it>Linum usitatissimum </it>L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed.</p> <p>Results</p> <p>We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions <ext-link ext-link-id="LIBEST_026995" ext-link-type="gen">LIBEST_026995</ext-link> to <ext-link ext-link-id="LIBEST_027011" ext-link-type="gen">LIBEST_027011</ext-link>) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for <it>in silico </it>expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development.</p> <p>Conclusions</p> <p>We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well.</p

    Meeting the challenges facing wheat production: The strategic research agenda of the Global Wheat Initiative

    Get PDF
    Wheat occupies a special role in global food security since, in addition to providing 20% of our carbohydrates and protein, almost 25% of the global production is traded internationally. The importance of wheat for food security was recognised by the Chief Agricultural Scientists of the G20 group of countries when they endorsed the establishment of the Wheat Initiative in 2011. The Wheat Initiative was tasked with supporting the wheat research community by facilitating collaboration, information and resource sharing and helping to build the capacity to address challenges facing production in an increasingly variable environment. Many countries invest in wheat research. Innovations in wheat breeding and agronomy have delivered enormous gains over the past few decades, with the average global yield increasing from just over 1 tonne per hectare in the early 1960s to around 3.5 tonnes in the past decade. These gains are threatened by climate change, the rapidly rising financial and environmental costs of fertilizer, and pesticides, combined with declines in water availability for irrigation in many regions. The international wheat research community has worked to identify major opportunities to help ensure that global wheat production can meet demand. The outcomes of these discussions are presented in this paper

    Microbouturage in vitro et culture de meristemes de Douglas (Pseudotsuga menziesii) : problemes lies a l'age et au milieu de culture

    No full text
    CNRS T 59088 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc

    Acetolactate synthase from Brassica napus: Immunological characterization and quaternary structure of the native enzyme

    No full text
    Acetolactate synthase (ALS, AHAS; EC 4. 1. 3. 18) from Brassica napus has been partially purified and characterized using polyclonal antibodies. Following denaturing sodium dodecyl sulphate polyacrylamide gel electrophoresis and western blot analysis, 65 and 66 kDa ALS subunit polypeptides were immunologically detected, along with a novel 36 kDa polypeptide which cross-reacted with the anti-ALS antibody. Partial peptide sequencing of the 36 kDa peptide revealed significant similarity to plant aldolase proteins. ALS activity from stromal extracts fractionated by gel filtration chromatography as a single species of estimated molecular mass of 124 kDa, while comparative sedimentation coefficient in glycerol gradients indicated a corresponding molecular mass of 132 kDa. The results suggest that the native enzyme is a dimer of 65 and/or 66 kDa subunits. Anion exchange chromatography resolved two classes of ALS activity of equal native molecular weight, but which exhibited different properties with respect to subunit structure, sensitivity to inhibition by chlorsulfuron and feedback inhibition by branched chain amino acids

    Isolation and structure of an acetolactate synthase gene from Schizosaccharomyces pombe and complementation of the ilv2 mutation in Saccharomyces cerevisiae

    No full text
    A gene encoding a functional acetolactate synthase (ALS) subunit has been isolated from the fission yeast Schizosaccharomyces pombe, and has been structurally and genetically characterized. The approximate 5-kbp cloned DNA segment was found to contain a 2007-bp open reading frame capable of encoding a 669 aminoacid polypeptide which exhibited 57.1% similarity to the corresponding ALS subunit from Saccharomyces cerevisiae. The putative ilv1 isolated from S. pombe was shown to encode a functional subunit of acetolactate synthase by complementation of an S. cerevisiae strain deleted for the ILV2 locus

    Heat and Drought Stresses in Crops and Approaches for Their Mitigation

    No full text
    Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed

    Combining a QSAR Approach and Structural Analysis to Derive an SAR Map of Lyn Kinase Inhibition

    No full text
    Lyn kinase, a member of the Src family of protein tyrosine kinases, is mainly expressed by various hematopoietic cells, neural and adipose tissues. Abnormal Lyn kinase regulation causes various diseases such as cancers. Thus, Lyn represents, a potential target to develop new antitumor drugs. In the present study, using 176 molecules (123 training set molecules and 53 test set molecules) known by their inhibitory activities (IC50) against Lyn kinase, we constructed predictive models by linking their physico-chemical parameters (descriptors) to their biological activity. The models were derived using two different methods: the generalized linear model (GLM) and the artificial neural network (ANN). The ANN Model provided the best prediction precisions with a Square Correlation coefficient R2 = 0.92 and a Root of the Mean Square Error RMSE = 0.29. It was able to extrapolate to the test set successfully (R2 = 0.91 and RMSE = 0.33). In a second step, we have analyzed the used descriptors within the models as well as the structural features of the molecules in the training set. This analysis resulted in a transparent and informative SAR map that can be very useful for medicinal chemists to design new Lyn kinase inhibitors

    DataSheet1.DOCX

    No full text
    <p>Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.</p

    Isolation, structure and expression of a cDNA for acetolactate synthase from Brassica napus

    No full text
    No Abstract available for this article
    corecore