22 research outputs found

    Comparison of Perron and Floquet eigenvalues in age structured cell division cycle models

    Get PDF
    We study the growth rate of a cell population that follows an age-structured PDE with time-periodic coefficients. Our motivation comes from the comparison between experimental tumor growth curves in mice endowed with intact or disrupted circadian clocks, known to exert their influence on the cell division cycle. We compare the growth rate of the model controlled by a time-periodic control on its coefficients with the growth rate of stationary models of the same nature, but with averaged coefficients. We firstly derive a delay differential equation which allows us to prove several inequalities and equalities on the growth rates. We also discuss about the necessity to take into account the structure of the cell division cycle for chronotherapy modeling. Numerical simulations illustrate the results.Comment: 26 page

    Circadian rhythm and cell population growth

    Get PDF
    Molecular circadian clocks, that are found in all nucleated cells of mammals, are known to dictate rhythms of approximately 24 hours (circa diem) to many physiological processes. This includes metabolism (e.g., temperature, hormonal blood levels) and cell proliferation. It has been observed in tumor-bearing laboratory rodents that a severe disruption of these physiological rhythms results in accelerated tumor growth. The question of accurately representing the control exerted by circadian clocks on healthy and tumour tissue proliferation to explain this phenomenon has given rise to mathematical developments, which we review. The main goal of these previous works was to examine the influence of a periodic control on the cell division cycle in physiologically structured cell populations, comparing the effects of periodic control with no control, and of different periodic controls between them. We state here a general convexity result that may give a theoretical justification to the concept of cancer chronotherapeutics. Our result also leads us to hypothesize that the above mentioned effect of disruption of circadian rhythms on tumor growth enhancement is indirect, that, is this enhancement is likely to result from the weakening of healthy tissue that are at work fighting tumor growth

    Self-similarity in a General Aggregation-Fragmentation Problem ; Application to Fitness Analysis

    Get PDF
    We consider the linear growth and fragmentation equation with general coefficients. Under suitable conditions, the first eigenvalue represents the asymptotic growth rate of solutions, also called \emph{fitness} or \emph{Malthus coefficient} in population dynamics ; it is of crucial importance to understand the long-time behaviour of the population. We investigate the dependency of the dominant eigenvalue and the corresponding eigenvector on the transport and fragmentation coefficients. We show how it behaves asymptotically as transport dominates fragmentation or \emph{vice versa}. For this purpose we perform suitable blow-up analysis of the eigenvalue problem in the limit of small/large growth coefficient (resp. fragmentation coefficient). We exhibit possible non-monotonic dependency on the parameters, conversely to what would have been conjectured on the basis of some simple cases

    An age-and-cyclin-structured cell population model with proliferation and quiescence for healthy and tumoral tissues

    Get PDF
    We present a nonlinear model of the dynamics of a cell population divided in a proliferative and a quiescent compartments. The proliferative phase represents the complete cell division cycle (G1SG2MG_{1}-S-G_{2}-M) of a population committed to divide at its end. The model is structured by the time spent by a cell in the proliferative phase, and by the amount of \emph{cyclin~D/(CDK4 or 6)} complexes. Cells can transit from one compartment to the other, following transition rules which differ according to the tissue state: healthy or tumoral. The asymptotic behaviour of solutions of the nonlinear model is analysed in both cases, exhibiting tissue homeostasis or tumour exponential growth. The model is simulated by numerical solutions which confirm its theoretical predictions

    Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis

    Get PDF
    International audienceBACKGROUND: Few genome-scale models of organisms focus on the regulatory networks and none of them integrates all known levels of regulation. In particular, the regulations involving metabolite pools are often neglected. However, metabolite pools link the metabolic to the genetic network through genetic regulations, including those involving effectors of transcription factors or riboswitches. Consequently, they play pivotal roles in the global organization of the genetic and metabolic regulatory networks. RESULTS: We report the manually curated reconstruction of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis (transcriptional, translational and post-translational regulations and modulation of enzymatic activities). We provide a systematic graphic representation of regulations of each metabolic pathway based on the central role of metabolites in regulation. We show that the complex regulatory network of B. subtilis can be decomposed as sets of locally regulated modules, which are coordinated by global regulators. CONCLUSION: This work reveals the strong involvement of metabolite pools in the general regulation of the metabolic network. Breaking the metabolic network down into modules based on the control of metabolite pools reveals the functional organization of the genetic and metabolic regulatory networks of B. subtilis

    Deterministic mathematical modelling for cancer chronotherapeutics: cell population dynamics and treatment optimisation

    Get PDF
    Chronotherapeutics has been designed and used for more than twenty years as an effective treatment against cancer by a few teams around the world, among whom one of the first is Francis Lévi's at Paul-Brousse hospital (Villejuif, France), in application of circadian clock physiology to determine best infusion times within the 24-hour span for anticancer drug delivery. Mathematical models have been called in the last ten years to give a rational basis to such optimised treatments, for use in the laboratory and ultimately in the clinic. While actual clinical applications of the theoretical optimisation principles found have remained elusive so far to improve chronotherapeutic treatments in use, mathematical models provide proofs of concepts and tracks to be explored experimentally, to progress from theory to bedside. Starting from a simple ordinary differential equation model that allowed setting and numerically solving a drug delivery optimisation problem with toxicity constraints, this modelling enterprise has been extended to represent the division cycle in proliferating cell populations with different molecular targets, to allow for the representation of anticancer drug combinations that are used in clinical oncology. The main point to be made precise in such a therapeutic optimisation problem is to establish, here in the frame of circadian chronobiology, physiologically based differences between healthy and cancer cell populations in their responses to drugs. To this aim, clear biological evidence at the molecular level is still lacking, so that, starting from indirect observations at the experimental and clinical levels and from theoretical considerations on the model, speculations have been made, that will be exposed in this review of cancer chronotherapeutics models with the corresponding optimisation problems and their numerical solutions, to represent these differences between the two cell populations, with regard to circadian clock control

    Towards Predicting the Response of a Solid Tumour to Chemotherapy and Radiotherapy Treatments: Clinical Insights from a Computational Model

    Get PDF
    In this paper we use a hybrid multiscale mathematical model that incorporates both individual cell behaviour through the cell-cycle and the effects of the changing microenvironment through oxygen dynamics to study the multiple effects of radiation therapy. The oxygenation status of the cells is considered as one of the important prognostic markers for determining radiation therapy, as hypoxic cells are less radiosensitive. Another factor that critically affects radiation sensitivity is cell-cycle regulation. The effects of radiation therapy are included in the model using a modified linear quadratic model for the radiation damage, incorporating the effects of hypoxia and cell-cycle in determining the cell-cycle phase-specific radiosensitivity. Furthermore, after irradiation, an individual cell's cell-cycle dynamics are intrinsically modified through the activation of pathways responsible for repair mechanisms, often resulting in a delay/arrest in the cell-cycle. The model is then used to study various combinations of multiple doses of cell-cycle dependent chemotherapies and radiation therapy, as radiation may work better by the partial synchronisation of cells in the most radiosensitive phase of the cell-cycle. Moreover, using this multi-scale model, we investigate the optimum sequencing and scheduling of these multi-modality treatments, and the impact of internal and external heterogeneity on the spatio-temporal patterning of the distribution of tumour cells and their response to different treatment schedules

    Integration of genetic and enzymatic controls in metabolic pathways

    No full text
    National audienceThe bacterial metabolic machinery and its regulation are a complex system and involve many components: metabolites and enzymes. The reconstruction of the regulatory networks of B. subtilis including the enzymatic reactions, the control of enzymatic activities and the genetic regulations (see [1]) allowed us to identify the main regulation structures of metabolic pathways. We noticed a strong interplay between the metabolic pathways and the genetic regulations. Then, in order to break the intrinsic complexity of such huge system and to reveal somewhat an order, we propose a new suitable notion of subsystems (modules) using mathematical dynamic models associated to these structures

    A first analysis of the central carbon pathway of Bacillus subtilis: Integration of both genetic and enzymatic levels in regulations

    No full text
    International audienceA challenging problem in systems biology consists in developing tools and methods to apprehend high-dimension dynamic systems in order to understand the global coordination of metabolic pathways in response to environmental changes. The recent module definition proposed by [1] combining both the genetic and metabolic levels allows to break down the metabolic network into subsystems with a simplified behavior in steady- state [2]. We illustrate this definition through the mathematical analysis of the central carbon pathway of Bacillus subtilis. The main players of this regulation structure are identified and we explain the global coordination of this pathway
    corecore