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∗ Projet BANG, UR Roquenourt, Institut de Reherhe en Informatique et en Au-tomatique, BP 105, F78153 Roquenourt, Frane, Fadia.Bekkal_Briki�inria.fr
† Projet BANG, UR Roquenourt, Institut de Reherhe en Informatique et en Au-tomatique, BP 105, F78153 Roquenourt and INSERM U 776 �Rythmes biologiques etaner�, H�pital Paul-Brousse, 14, Av. Paul-Vaillant-Couturier, F94807 Villejuif, Frane,Jean.Clairambault�inria.fr
‡ Institut de Médeine Théorique, Département de Pharmaologie Clinique EA3736,Faulté de Médeine R.-T.-H. Laënne, Université Lyon 1, Rue Paradin, F69376 Lyon Cedex08, Frane, br�upl.univ-lyon1.fr
§ Département de Mathématiques Appliquées, Éole Normale Supérieure, 45, rue d'Ulm,F75005 Paris and Projet BANG, UR Roquenourt, Institut de Reherhe en Informatiqueet en Automatique, BP 105, F78153 Roquenourt, Frane, Benoit.Perthame�ens.fr



2 Bekkal Briki, Clairambault, Ribba, Perthameboth ases, exhibiting tissue homeostasis or tumour exponential growth. Themodel is simulated by numerial solutions whih on�rm its theoretial pre-ditions.Key-words: Cell yle, Population dynamis, Partial Di�erential Equations,Cylins, Tumour growth, Caner.

INRIA



Un modèle de populations ellulaires struturéen âge et en yline ave prolifération etquiesene pour des tissus sains et tumorauxRésumé : Nous présentons un modèle non linéaire de la dynamique d'unepopulation ellulaire divisée en un ompartiment proliférant et un ompartimentquiesent. La phase de prolifération représente l'ensemble du yle de divisionellulaire (G1 −S−G2 −M) d'une population de ellules appelées à se diviseren �n de yle. Le modèle est struturé par le temps passé par une ellule dansla phase de prolifération et par la quantité de omplexes yline D/(CDK4 ou6). Les ellules peuvent passer d'un ompartiment à l'autre, en suivant des loisde transition qui di�èrent suivant que le tissu qu'elles onstituent est de naturesaine ou tumorale. Le omportement asymptotique des solutions du modèlenon linéaire est analysé dans les deux as, et montre une homéostasie tissulairedans le premier, et une roissane exponentielle (tumorale) dans le seond. Dessimulations numériques du modèle on�rment ses préditions théoriques.Mots-lés : Cyle ellulaire, Dynamique des populations, Équations auxdérivées partielles, Cylines, Croissane tumorale, Caner.
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Cell yle model with proliferation and quiesene 51 IntrodutionLiving tissues, subjet to renewal, are onstituted of two di�erent ategoriesof ells: the proliferating ells (p) and the quiesent ells (q). Proliferatingells grow and divide, giving birth at the end of the ell yle to new ells, orelse transit to the quiesent ompartment (often referred to as the G0 phase),whereas quiesent ells do not grow nor divide but either transit to the prolif-erative ompartment or else stay in G0 and eventually di�erentiate aordingto the tissue type.In a tumour ell population the number of proliferating ells inreases on-tinuously as long as it is malignant and ative, whereas in a normal (healthy)ell population, the size of the proliferative ompartment remains boundedsine the total number of ells, proliferating and quiesent, remains onstant(at least in the mean, e.g. by averaging over 24 hours) so as to maintain tissuehomeostasis.During the �rst phase (often referred to as G1) of the proliferating ell yle,until the restrition point (R) in late G1 has been reahed, proliferating ellsmay enter the quiesent G0 phase and stop proliferation. Indeed, experimentsby Zetterberg and Larsson [10, 34℄ showed that the restrition point (R) dividesthe G1 phase into two parts: before R, ells may enter the quiesent phase,but one it has been passed, they are ommitted to proeed along the otherphases (S,G2,M, whih will not be onsidered here as suh) until ell division.The swithing of ells between quiesene and proliferation depends onextraellular environmental onditions suh as growth and antigrowth fators,and is regulated di�erently in normal and tumour ells, due to di�erenes inthe expression of the involved genes.Cell population models with proliferative and quiesent ompartments havebeen investigated by authors who studied the asynhronous exponential growthproperty [3, 14, 15, 28℄. Our goal here is to design a generi ell populationmodel appliable to both aner and normal tissue growth.Unlimited tumour growth, by opposition to healthy tissue homeostasis, anbe seen in partiular as a deregulation of transitions between proliferative andquiesent ompartments. Furthermore, reent measurements [16℄ indiate thatylins are the most determinant ontrol moleules for phase transitions.For these reasons, and sine we are interested in studying in parallel thebehaviour of healthy and tumour ells, we struture our ell population modelin age and ylin ontent, a proess whih we desribe step by step in setions2 and 3. In setion 4, we analyse the theoretial properties of the model, whihwe illustrate by numerial simulations in setion 5. Finally, some ommentsand future prospets are brie�y developed in setion 6.
RR n° 5941



6 Bekkal Briki, Clairambault, Ribba, Perthame2 Moleular mehanisms involved in theG1 phaseA variety of proteins are produed during the proliferative ell yle. Theprogression of a ell through the yle is ontrolled by omplexes omposed oftwo proteins: a ylin (strutural protein) and a ylin dependent kinase (orCDK), an enzyme whih is needed for the ylin to ativate. Eah phase of theell yle has spei� ylin/CDK omplexes. In partiular, ylin D/(CDK4or 6) and ylin E/CDK2 ativate during the G1 phase. Cylin D is the �rstylin whih is synthesized at the beginning of the ell yle. The level of y-lin D is ontrolled by the extraellular environment. Thus, ylin D synthesisis indued by spei� growth fators (GFs) [5℄, and its level deays when ellsare deprived of GFs. GFs bind to spei� reeptors on the external ytoplas-mi membrane, stimulating an intraellular signalling pathway (Ras/Raf/Mapkinase) by means of whih ylin D is eventually synthesized (see [2, 4, 30℄,for more details). Experiments reported in [17, 35℄ show the important roleof ylin D as a regulator of the transition between G1 and G0. They showthat a redued exit from G1 to G0 ours when ylin D is overexpressed,whereas non overexpressing ells remain in G0. Progression through the re-strition point (R) is essentially related to ylin D level inasmuh as whenthere is a su�ient amount of ylin D, ells pass the restrition point and areommitted to proeed through the rest of the ell yle. Moreover, ylin Dmakes omplexes with either CDK4 or CDK6 kinases and these omplexes areable to phosphorylate other proteins whih are important for ell progressionin the G1 phase through the restrition point and further for the rest of theell division yle: DNA repliation, mitosis and ell division.In this paper, we are interested in the moleular interations that are re-lated to the ativity of the ylin D/(CDK4 or 6) omplexes. Several authors[24, 25, 26, 32℄ have desribed and simulated, under spei� assumptions, partof these omplex reations. Here, we give a simple model to desribe the a-tivity of ylin D/(CDK4 or 6) indued by growth fators.Let x be the amount of the omplexes ylin D/(CDK4 or 6) and w anaggregated variable representing the amount of the various moleules involvedin the synthesis of ylin D suh as Ras/Raf. We onsider x and w as regulatingvariables in a simple nonlinear system of ordinary di�erential equations (ODEs)with respet to age a in the G1 phase. Synthesis of x ours at a rate c1 andits degradation at a rate c2; we assume that the synthesis of w is indued by
INRIA



Cell yle model with proliferation and quiesene 7growth fators (GF s) at a onstant rate c3, its degradation ourring at a rate
c4. The ODE model an thus be written as follows:











dx

da
= c1

x

1 + x
w − c2x, x(0) = x0 > 0,

dw

da
= c3 − c4w, w(0) = w0 > 0.

(1)The only nonlinearity of the model is loated in the term c1
x

1 + x
representinga positively autoregulating oe�ient with saturation for x under the linearin�uene of the lumped variable w. Substituting the solution of the seondequation of (1), we an redue (1) to one equation in x:

dx

da
= c1

x

1 + x

(

c3
c4

+ e−c4a(w0 −
c3
c4

)

)

− c2x, x(0) = x0. (2)This holds only for the G1 phase sine we assume that ylin amount x andage a remain onstant in G0 phase. A natural quantity arises in the qualitativeanalysis of (2), the x-nullline:
X(a) =

c1
c2

(

c3
c4

+ e−c4a(w0 −
c3
c4

)

)

− 1.We assume that w0 ≤
c3
c4

and c1c3 > c2c4 whih is a way to express that thelumped variable w is inreasing from its initial to its asymptoti value, andthat in the early G1 phase the overall synthesis of the hemials involved inthe progression of the G1 phase overomes their degradation. Therefore, afundamental property of equation (2) is that the ylin onentration x islimited by:
xmax =

c1c3
c2c4

− 1 > 0. (3)We keep this simple model for our next purpose whih is to desribe apopulation of ells, in proliferative or quiesent state.3 Physiologially strutured modelWe onsider here only two phases: a quiesent one (physiologially G0) and aproliferative one (physiologially G1 − S −G2 −M). The ell populations westudy are �rstly strutured by the time spent inside the proliferative phase.This phase represents here the omplete ell division yle sine ell birth, andthis time in the phase will hereafter be referred to as a, for physiologial age inthe yle. As proposed in [6, 33℄, we also struture the model by the amountof ylin D/(CDK4 or 6) omplexes, denoted by variable x. Indeed, as men-tioned earlier, this biologial quantity is the most important determinant ofRR n° 5941



8 Bekkal Briki, Clairambault, Ribba, Perthameprogression up to the restrition point R in the late G1 phase.Let p (t, a, x)and q (t, a, x) be respetively the densities of proliferating andquiesent ells with age a and ontent x in ylin D/(CDK4 or 6) omplexesat time t.We also onsider a �total weighted population�, i.e., an e�etive populationdensity, N de�ned by:
N (t) =

+∞
∫

0

+∞
∫

0

(

ϕ∗(a, x)p (t, a, x) + ψ∗(a, x)q (t, a, x)

)

dadx. (4)Here the weights ϕ∗ and ψ∗ represent environmental fators suh as growth andanti-growth fators ating on the populations of proliferating and quiesentells, respetively. N is the density of the fration of the total populationonsisting in the ells that are sensitive to these fators and are thus quali�edto in�uene, e.g. by a mehanism apparented to density inhibition, the G0/G1transition. This exludes for instane apoptoti or pre-apoptoti ells.Exits from the quiesent ompartment are due either to apoptosis (physio-logial ell death) at a rate d or to transition to the proliferative phase aord-ing to a �reruitment� or �getting in� funtion G, whih is assumed to dependon the total weighted population N . We also assume that ells may leave theproliferative ompartment for the quiesent one aording to a �demobilisa-tion� or �leak� funtion L (a, x). These funtions L and G, whih representthe ore mehanism of exhange between proliferation and quiesene in ourmodel, will be desribed in setion 3.2. The model may thus be written as:


































∂

∂t
p (t, a, x) +

∂

∂a
(Γ0p (t, a, x)) +

∂

∂x
(Γ1 (a, x) p (t, a, x)) =

− (L (a, x) + F (a, x) + d1) p (t, a, x) +G (N (t)) q (t, a, x) ,

∂

∂t
q (t, a, x) = L (a, x) p (t, a, x) − (G (N (t)) + d2) q (t, a, x) .

(5)
Quiesent ells are assumed to be halted in their individual physiologial evolu-tion, in the sense that one a ell beomes quiesent, its age and ylin ontentare �xed at their last values as belonging to a proliferative ell. In this way,quiesent ells do not age and do not hange their ylin ontent.The parameter Γ0 denotes the evolution speed of physiologial age a withrespet to time t, whih is assumed to be onstant in this model; if for example
Γ0 = 0.5, it means that physiologial age a evolves twie as slowly as real time
t. Similarly, the funtion Γ1 represents the evolution speed of ylin D/(CDK4INRIA



Cell yle model with proliferation and quiesene 9or 6) with respet to time, i.e., Γ0 times the speed dx

da
of x with respet tophysiologial age a, whih is given by equation (2), with w1 = w0 −

c3
c4
< 0 :

dx

da
=

Γ1 (a, x)

Γ0
= c1

x

1 + x

(

c3
c4

+ e−c4aw1

)

− c2x.The parameters d1, d2 are apoptosis rates for proliferating and quiesent ellsrespetively, and F (a, x) is the fration of ells whih leave the proliferativepopulation to divide aording to a proess whih will be desribed later.To omplete the desription of the model (5), we speify initial onditions:
p (0, a, x) = pi(a, x), a ≥ 0, x ≥ 0, (6)and
q (0, a, x) = qi(a, x), a ≥ 0, x ≥ 0, (7)where pi and qi are nonnegative funtions.In the following setion, we desribe a ondition for entering the proliferat-ing phase (physiologially in G1) at age a = 0, but note that no suh onditionis needed at x = 0 , sine ylin level x = 0 is never reahed in the proessdesribed by (2) beause Γ1 vanishes at x = 0 .3.1 Unequal divisionThe distribution of the ellular material between daughter ells is assumed tobe unequal. Due to variability in ylin ontent between the two daughter ellswhen division ours (see [18℄, and [31℄ for a relation with ageing), some ellsmay inherit a bigger amount of ertain proteins as ylins, whereas others startthe yle with a smaller amount of the same proteins. We onsider that thedistribution of the amount of ylin D/(CDK4 or 6) between the two daughterells is given by a onditional density f (a, x, y) suh that the probability for adaughter ell, born from a mother ell with ontent y in ylin D/(CDK4 or6) with x1 ≤ y ≤ x2 , to have itself ontent x in ylin D is:

x2
∫

x1

f (a, y, x)dy

+∞
∫

0

f (a, y, x)dy

.
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10 Bekkal Briki, Clairambault, Ribba, PerthameWe also onsider that all newborn ells are at birth in the proliferative om-partment. Then we have the following ondition at the boundary a = 0,
p (t, 0, x) =

2

Γ0

+∞
∫

0

+∞
∫

0

f (a, x, y) p (t, a, y)dady. (8)The following onditions follow from the above interpretation:(1) The ylin amount of a daughter ell is smaller than that of its mother ellat the time of division:
f(a, x, y) = 0 if x > y.(2) The ylin amount y of the mother ell is exatly onserved and shared bythe two daughters
f(a, x, y) = f(a, y − x, y)and

∫ +∞

0

f(a, x, y)dx = F (a, y) ,where F (a, y) is the fration of ells whih at age a and ylin ontent y leavethe proliferating phase to undergo ell division. These ells disappear and arereplaed by two daughter ells whih immediately restart in the proliferativephase for their own part.We hoose for F a standard Hill funtion:
F (a, y) =

k1y
γ1

kγ1

2 + yγ1

1l[A∗,+∞[(a),where k1 is the maximum e�et of ylin D on ell division , k2 is the ylinontent yielding its half-maximum e�et, γ1 is the Hill oe�ient tuning thesteepness of the swith at y = k2 between 0 and k1 for the e�et, and A∗ is theminimal ell yle duration; we also onsider that ylin repartition is uniformafter division:
f (a, x, y) =

F (a, y)

y
1l[0,y](x).3.2 Transition ontrol between proliferation and quies-eneLynh [19℄ has studied the e�et of a transription fator that inhibits theproliferation of human olon aner ells by reduing ylin D gene expressionand hene induing an aumulation of ells in G0. Deprivation of growthfators (GFs) in the early G1 phase also leads to a low ylin D level in ells,when ylin D/CDK4 is the only ylin/CDK omplex present, and the lowlevel of ylin D is suh that ells exit G1 to enter the G0 phase.

INRIA



Cell yle model with proliferation and quiesene 11We �rstly assume that transition from proliferation to quiesene dependson age and ylin ontent of the ell. At the beginning of the ell yle, the ellremains in the proliferative phase but from a ertain age on, if its ontent in y-lin D/(CDK4 or 6) is not high enough, the ell passes to the quiesent phase.We set the �demobilisation� funtion from proliferation to quiesene as:
L (a, x) = A1

Aγ2

2

Aγ2

2 + xγ2

1l[Ā,+∞[(a).In this setting, if the Hill exponent γ2 is high enough (e.g. between 5 and 10),
A2 is the �swithing� ylin ontent value x beyond whih, the �leak� funtion
L beomes lose to zero, preventing esape to quiesene. At this point, theell population is irreversibly ommitted to proeed into the proliferating phaseuntil division. The value A2 may thus be interpreted as the ylin D/(CDK4or 6) level determining the restrition point, in the sense of Zetterberg andLarsson [34℄. The steep swith in funtion L represents the fat that transitionfrom G1 to G0 is preeded by a rapid inrease in physiologial ylin-dependentkinase inhibitors (CDKIs), suh as p15, p21, p27, signi�antly reduing theativities of the G1 CDKs [29℄.Seondly, as regards the reverse transition from quiesene to prolifera-tion (the �reruitment� funtion), it may be assumed to depend on the totalpopulation of ells (see e.g. [20℄). In the present model, as stated above, weassume that the reruitment depends on those ells (subpopulation N of thetotal population) that are quali�ed to be sensitive to growth or anti-growthfators. Two ases are studied in this paper, sine we assume healthy tissuesand tumours to behave di�erently with respet to the transition from G0 to
G1:1) For a healthy tissue, the fration of the quiesent ells that reenter theproliferative phase dereases when the total population grows; in this ase wede�ne the reruitment funtion G as a monotone Hill funtion of N dereasingto zero, representing density inhibition:

G (N) =
α1θ

n

θn +Nn
, (9)where parameters α1, θ and n have the same meaning as k1, k2 and γ1 forfuntion F (a, x), see above, exept that the swith is from α1 to zero insteadof zero to k1.2) For a tumour, the fration of the quiesent ells that enter the proliferativephase is also dereasing with the total population, but asymptotially tendstowards a non zero value when the population is very large, representing a

RR n° 5941



12 Bekkal Briki, Clairambault, Ribba, Perthamepopulation density inhibition less omplete than in healthy tissues. So that,in the tumoral ase, we take G as follows:
G (N) =

α1θ
n + α2N

n

θn +Nn
, with α2 < α1 to ensure deay. (10)We then analyse the qualitative behaviour of the model, whih enables us todistinguish a healthy tissue from a tumour by the asymptoti behaviour oftheir ell densities.4 Analysis and qualitative behaviourWe now perform the analysis of the model developed above. We use for thatpurpose the method of Generalised Relative Entropy (GRE), whih was re-ently introdued in [21, 22, 23℄. It allows us to deal with the model in itsfull generality. The GRE method is based on the study of eigenproblems forlinearised systems and relies on the Krein-Rutman theorem for ompat pos-itive operators (see [11℄). The use of other methods is possible, for instanemethods based on the theory of abstrat semigroups with strutural onditionsas desribed below or, in speial ases, redution to di�erential equations withdelay (see [1℄ for instane).4.1 Linear problemThe linear problem assoiated with (5) assumes that the transition rate fromthe quiesent to the proliferative state is a onstant G̃, suh that:



















































∂p

∂t
+
∂ (Γ0p)

∂a
+
∂ (Γ1 (a, x) p)

∂x
= − (L (a, x) + F (a, x) + d1) p (t, a, x) + G̃q (t, a, x) ,

∂q

∂t
= L (a, x) p (t, a, x) − (G̃+ d2)q (t, a, x) ,

p (t, 0, x) =
2

Γ0

+∞
∫

0

+∞
∫

0

f (a, x, y) p(t, a, y)dady. (11)Gyllenberg and Webb, studying a similar linear problem by methods relyingon the theory of ontinuous semigroups, proved the existene and uniquenessof a positive solution for the system, and also proved that it has the propertyof asynhronous exponential growth [14℄ (note that this results in fat fromvariants of the Krein-Rutman theorem [11℄). It means the following: thegrowth rate assoiated with (11) -the so-alled Malthus parameter- i.e., the�rst eigenvalue of the problem, also referred to as the Perron eigenvalue in theINRIA



Cell yle model with proliferation and quiesene 13�nite-dimensional ase, is de�ned as the only λ yielding a nonnegative steadystate (P,Q) solution of:














































λP +
∂ (Γ0P )

∂a
+
∂ (Γ1 (a, x)P )

∂x
= − (L (a, x) + F (a, x) + d1)P + G̃Q,

(λ+ G̃+ d2)Q = L (a, x)P,

P (0, x) =
2

Γ0

+∞
∫

0

+∞
∫

0

f (a, x, y)P (a, y) dady. (12)Of ourse this system an be redued to a single equation on P , and λ dependsontinuously upon G̃. For an age-strutured model it an be solved by themethod of harateristis.For further purposes, it is also useful to introdue the adjoint system, followingthe theory developed in [21℄. Here, there is an additional di�ulty oming fromthe boundary ondition at a = 0 . The adjoint problem reads:






























λϕ− Γ0
∂ϕ

∂a
− Γ1 (a, x)

∂ϕ

∂x
− 2

∫ +∞

0

ϕ (0, y) f (a, y, x) dy

= − (L (a, x) + F (a, x) + d1)ϕ+ L (a, x)ψ,

(λ+ G̃+ d2)ψ = G̃ϕ,

(13)
with ϕ ≥ 0, ψ ≥ 0, and normalisation by the ondition:

+∞
∫

0

+∞
∫

0

(

ϕ(a, x)P (a, x) + ψ(a, x)Q (a, x)

)

dadx = 1.These equations imply that solutions of (11) satisfy:
+∞
∫

0

+∞
∫

0

(

ϕ(a, x)p (t, a, x) + ψ(a, x)q (t, a, x)

)

dadx

= eλt

+∞
∫

0

+∞
∫

0

(

ϕ(a, x)pi (a, x) + ψ(a, x)qi (a, x)

)

dadx ,

(14)
a ondition that learly expresses exponential growth with rate λ.In the following, we explain why these growth rates an allow to quali-tatively distinguish between healthy and tumoral tissues. This will be doneRR n° 5941



14 Bekkal Briki, Clairambault, Ribba, Perthameaording to the behaviour of the �rst eigenvalue λ for the system linearisedat the extreme values of the reruitment funtion G, G(0) = α1 and G∞ = α2.We then present the main features of the nonlinear problem using a methodintrodued in [8℄ enforing onditions on the linearised problem.4.2 Healthy tissue: Non-extintion (a priori bound frombelow)Coming bak to the nonlinear problem, we �rst state onditions enforingnon-extintion. For this purpose, we need to investigate the linearised prob-lem around N(t) = 0 and its �rst eigenvalue.We assume that the oe�ients are suh that the following qualitative prop-erties hold true:(H1) For G̃ = G(0) = α1 , the �rst eigenvalue, denoted here as λ0, of system(12) and its adjoint (13), is positive (λ0 > 0).(H2) For the orresponding solutions to (12) and (13) obtained for G̃ = G(0) ,
(p0, q0) and (ϕ0, ψ0), there exists a onstant C0, suh as ϕ∗ ≤ C0ϕ0 and ψ∗ ≤ C0ψ0(ϕ∗, ψ∗ being as de�ned in (4)).These assumptions express that even if there are very few ells in the healthytissue, the population an be regenerated spontaneously. Note that if we apriori assume the existene of a maximum possible age, then the positivity of
ϕ0 and ψ0 implies that (H2) is automatially satis�ed for any pair of boundedfuntions (ϕ∗, ψ∗) .Lemma 1 Under hypotheses (H1) and (H2) there exists a number m0 suhthat:

+∞
∫

0

+∞
∫

0

(

ϕ0(a, x)p(t, a, x) + ψ0(a, x)q(t, a, x)

)

dadx ≥ m0 > 0 ∀t ≥ 0.Proof of Lemma 1 Indeed, setting:
S0(t) =

+∞
∫

0

+∞
∫

0

(

ϕ0(a, x)p(t, a, x) + ψ0(a, x)q(t, a, x)

)

dadx,
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Cell yle model with proliferation and quiesene 15and using (5) and (13), we have, by the same duality priniple used for deriving(14):
dS0

dt
(t) = λ0S0(t) −

λ0 + d2

G(0)
(G(0) −G(N(t)))

+∞
∫

0

+∞
∫

0

ψ0(a, x)q(t, a, x)dadx ,whene, beause p ≥ 0 :
dS0

dt
(t) ≥

(

λ0 + d2

G(0)
G(N(t)) − d2

)

S0(t).Therefore, �rstly:
S0(t) ≥ S0(0) exp

{
∫ t

0

(

λ0 + d2

G(0)
G(N(u)) − d2

)

du

}

> 0.Now, if the minimum of S0 (t) is attained at t = 0 , then S0(t) ≥ S0(0) > 0 ;otherwise it is attained at some point t0 (possibly at in�nity), where dS0

dt
(t0) = 0 ,whih yields:

G(N(t0)))
λ0 + d2

G(0)
− d2 ≤ 0,or equivalently:

G(N(t0)) ≤
d2

λ0 + d2
G(0).Sine G is ontinuous and dereasing to 0, there exists a number N0 > 0 suhthat:

G(N0) =
d2

λ0 + d2

G(0).Thus G(N(t0)) ≤ G(N0) , whih implies that N(t0) ≥ N0 > 0 and by (H2), forall t, S0(t) ≥ S0(t0)
N0

C0

. Therefore we have proved the result with
m0 = min

(

N0

C0
, S0(0)

)

.4.3 Healthy tissue: Limited growth (a priori bound fromabove)We also need onditions enforing tissue homeostasis, meaning that the totalell population density is limited in its growth: for this purpose we assumethat for some λlim < 0 , there exist a real number Nlim > 0 and nonnegativefuntions (ϕlim, ψlim) satisfying:(H3) For G̃ = G(Nlim) =
α1θ

n

θn +Nn
lim

, the �rst eigenvalue, denoted here as λlimRR n° 5941



16 Bekkal Briki, Clairambault, Ribba, Perthameof system (12) and its adjoint(13), is negative (λlim < 0).(H4) For the orresponding solutions to (12) and (13) obtained for G̃ = G(Nlim) ,
(plim, qlim) and (ϕlim, ψlim), there exists a onstant Clim, suh that ϕ∗ ≥ Climϕlimand ψ∗ ≥ Climψlim .These assumptions express that a large exess of ells is regulated negativelyand thus the population remains bounded.Lemma 2 Under hypotheses (H3) and (H4) there is a number mlim suh that:

+∞
∫

0

+∞
∫

0

(

ϕlim(a, x)p(t, a, x) + ψlim(a, x)q(t, a, x)

)

dadx ≤ mlim, ∀t ≥ 0.Proof of Lemma 2 Indeed as for Lemma 1, we de�ne
Slim(t) =

+∞
∫

0

+∞
∫

0

(

ϕlim(a, x)p(t, a, x) + ψlim(a, x)q(t, a, x)

)

dadx.Then,
dSlim

dt
(t) = λlimSlim(t) − (G(Nlim) −G(N(t)))

λlim + d2

G(Nlim)

+∞
∫

0

+∞
∫

0

ψlim(a, x)q(t, a, x)dadx

≤ λlimSlim(t) − (G(Nlim) −G(ClimSlim(t)))
λlim + d2

G(Nlim)

+∞
∫

0

+∞
∫

0

ψlim(a, x)q(t, a, x)dadx,beause, thanks to assumption (H4):
N(t) ≥ ClimSlim(t).Therefore, following the arguments above,

Slim(t) ≤ max

(

Slim(0),
Nlim

Clim

)

:= mlim.4.4 Tumoral tissue: Unlimited growthFollowing setion 3.2, in the tumoral ase, the reruitment funtion from qui-esene to proliferation is given by the funtion (10):
G (N) =

α1θ
n + α2N

n

θn +Nn
.
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Cell yle model with proliferation and quiesene 17Here, we expet that the population will show unlimited growth, and a ondi-tion leading to this property is:(H5) For G̃ = G(∞) = α2 , the �rst eigenvalue, denoted here as λ1, of system(12) and its adjoint (13), is stritly positive (λ1 > 0).(H6) For the orresponding solutions to (12) and (13) obtained for G̃ = G(∞) ,
(p1, q1), (ϕ1, ψ1), there exists a onstant C1, suh that ϕ∗ ≥ C1ϕ1 and ψ∗ ≥ C1ψ1 .Lemma 3 Under hypotheses (H5) and (H6), we have

N(t) −→
t→+∞

+∞,and
+∞
∫

0

+∞
∫

0

(

ϕ1(a, x)p(t, a, x) + ψ1(a, x)q(t, a, x)

)

dadx −→
t→+∞

+∞.Proof of Lemma 3 Indeed, we de�ne:
S1(t) =

+∞
∫

0

+∞
∫

0

(

ϕ1(a, x)p(t, a, x) + ψ1(a, x)q(t, a, x)

)

dadx.We have, sine G is dereasing,
dS1

dt
(t) = λ1S1(t) − (G(∞) −G(N(t)))

λ1 + d2

G(∞)

+∞
∫

0

+∞
∫

0

ψ1(a, x)q(t, a, x)dadx

≥ λ1S1(t).This implies that S1(t) has exponential growth. Finally, thanks to (H6) wehave N(t) ≥ C1S1(t) . We onlude that N(t) tends to in�nity and Lemma 3is proved.Note that we an also onsider the ase λ1 = 0 in (H5). In this ase, S1(t)would have unlimited, but not exponential growth, and we would be loserto atual observations of tumour growth [7, 12℄. Suh polynomial-like growthbehaviour ould be obtained in the model by inorporating spei� exhangefuntions L and G between G0 and G1 atually yielding λ1 = 0.4.5 Steady state for healthy tissueNumerial experiments show that in the ase of healthy tissues, the ell pop-ulation goes to a steady state that represents tissue homeostasis. This an be
RR n° 5941



18 Bekkal Briki, Clairambault, Ribba, Perthameanalysed in the present model, sine a steady state (p∗, q∗) for (5) satis�es thefollowing system of equations:


































∂ (Γ0p
∗)

∂a
+
∂ (Γ1 (a, x) p∗)

∂x
= − (L (a, x) + F (a, x) + d1) p

∗ (a, x) +G (N∗) q∗ (a, x) ,

L (a, x) p∗ (a, x) − (G (N∗) + d2) q
∗ (a, x) = 0,

p∗ (0, x) =
2

Γ0

∫ +∞

0

∫ +∞

0

f(a, x, y)p∗ (a, y) dady,with
N∗ =

+∞
∫

0

+∞
∫

0

(

ϕ∗(a, x)p∗(a, x) + ψ∗(a, x)q∗(a, x)

)

dadx. (15)Substituting q∗, we obtain the equation:


















∂ (Γ0p
∗)

∂a
+
∂ (Γ1 (a, x) p∗)

∂x
= −r(a, x,N∗)p∗ (a, x) ,

p∗ (0, x) =
2

Γ0

∫ +∞

0

∫ +∞

0

f(a, x, y)p∗ (a, y) dady,

(16)with
r(a, x,N∗) =

d2

G (N∗) + d2
L (a, x) + F (a, x) + d1.Proposition 4.1 With the assumptions (H1), (H2), (H3) and (H4), the sys-tem (15), (16) has a unique positive solution (p∗, q∗).Proof of Proposition 4.1: Equation (16) is an eigenproblem as is equation(12); therefore, given a steady state population number N∗, we an �nd λ(N∗)solution of (12). We know by (H1), (H2) that λ(0) > 0 and by (H3) and(H4) that λ(Nlim) < 0 . Beause λ(N∗) is ontinuous, and dereasing sine ris inreasing with N∗, there is a unique value of N∗ suh that λ(N∗) = 0 . Itremains to normalise the eigenvetors properly to obtain (15).Remark 1 From (H5) and (H6) we dedue that, for tumour growth, (5) hasno steady state.
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Cell yle model with proliferation and quiesene 195 Numerial simulationsSome of the model parameters are known for spei� ells in other settingsfor funtions used in a similar ontext. For stem ells, the parameters arewell doumented in the literature on the subjet (see e.g. [20℄), and we hoseparameter values aording to these soures, knowing that atually identifyingthese values on other ell lines would be neessary for experimental validationof the model. Parameter values ome from [32℄ for c1, c2, c4, and from [20℄ for
d1, d2, α1, n, θ. The fators determining transition from proliferation to quies-ene have been proved to be diretly related to ylin D [5, 17, 19, 35℄, but theexat rates are not known. In the same way, parameters A1, A2, k1, k2, γ1, γ2,
w0, Γ0, α2, A∗, A are not known, but the hoies made have been determinedeither by �xing arbitrary values -as likely as possible, e.g. A∗ = 24 hours,
A = 15 hours- or by giving a range of values within whih our numerial simu-lations exhibit a behaviour illustrating the theoretial properties of the modeldemonstrated under assumptions (H1) − (H6).Parameters Values Parameters Values

c1 0.04 γ1 5 − 10
c2 0.03 A∗ 24 hours
c3 0.3 A1 0.8 − 1
c4 0.01 A2 25
w0 1 γ2 5 − 10

Γ0 0.5 A 15 hours
d1 0.07 day−1 α1 0.8 day−1

d2 0.07 day−1 θ 0.095 × 106

k1 1 n 1
k2 20 α2 0.7 day−1Table 1. Parameters and values used in simulations.In our numerial simulations, we have used ϕ∗ = ψ∗ ≡ 1 , whih means thatall ells are eligible for reruitment ontrol (by ell density inhibition, growthor antigrowth fators) in phase G1.For healthy tissues, Figure 1 shows the trend towards a steady state asstated in Proposition 4.1 and Figure 2 shows the distribution of ells aordingto their age and ylin D/(CDK4 or 6) onentrations in the proliferatingphase.We have veri�ed that assumptions (H1) and (H3) hold true. The so-alledpower algorithm [13℄ allowed us to obtain numerially the �rst eigenvalue forsystem (12). For G̃ = α1 = 0.8 , we have obtained λ0 = 0.026 , whih is om-patible with (H1); we have also numerially determined Nlim = 5.6 × 106 , and
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20 Bekkal Briki, Clairambault, Ribba, Perthame

Figure 1: Time evolution of total population for a healthy tissue. Left:total quiesent ells ∫ +∞

0

∫ +∞

0
q(t, a, x)dadx; right: total proliferating ells

∫ +∞

0

∫ +∞

0
p(t, a, x)dadx.

Figure 2: Isovalues of the total ell population for a healthy tissue at steadystate (p∗, q∗); variable x (ylin ontent) is in absissae, variable a (age inthe proliferating phase) in ordinates, and level lines indiate onstant p∗ or q∗values. Left: quiesent ells q∗(a, x); right: proliferating ells p∗(a, x).
Figure 3: Time evolution of total population for a tumoral tissue. Left:total quiesent ells ∫ +∞

0

∫ +∞

0
q(t, a, x)dadx; right: total proliferating ells

∫ +∞

0

∫ +∞

0
p(t, a, x)dadx.obtained λlim = −0.12 for G̃ = G(Nlim) =

α1θ
n

θn +Nn
lim

, whih is ompatible with(H3) sine the ell population has limited growth.
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Cell yle model with proliferation and quiesene 21For a tumoral tissue, Figure 3 shows that the population has unlimitedexponential growth.6 Disussion and onlusionWe have onsidered a nonlinear model to desribe a ell population struturedby its age and its amount of ylin with two ompartments: proliferating andquiesent ells. We have strutured our ell population model by the amount ofylin D/(CDK4 or 6) sine it is the (ylin/CDK) omplex whih is the mostdeterminant for the progression in the ell yle until the restrition point, andit is also important for the transition between proliferation to quiesene, sinethere is only one proliferating phase in the model, other ylins, e.g. E, A,
B, have not been onsidered. We have also assumed that the transition fromquiesene to proliferation depends on the total (�quali�ed�) ell population.Our ell population model an be applied to both aner and normal tissuegrowth.The analysis we have arried out, assuming reasonable hypotheses on theparameters, exhibits a steady state for a healthy tissue and, on the ontrary,unlimited growth for tumoral tissue. In addition, the numerial simulationson�rm these results, as illustrated by Figures 1, 2 and 3.Throughout our analysis, we have partiularly studied the role of tran-sitions between quiesene and proliferation, fousing upon the intraellularamount of ylin D, to onnet the physiologial behaviour of individual ellswith the asymptoti behaviour of the orresponding ell populations with re-spet to their growth dynamis, for both healthy and tumoral tissues.In this paper, we did not take spae into aount, a hoie whih wasunlikely to yield for the solutions of the equations the Fisher-KPP-like long-term behaviour whih has been observed by various authors for the growthof solid spheroid tumours [7, 12℄, i.e., R(t) ≃ kt for the tumour radius as afuntion of time. But note that these observations deal with tumours thathave in ommon to be desribed at a late stage, when spae limitations areessential to tumour growth kineti mehanisms. In this respet, the presentmodel, in the tumoral ase, may be suitable only for the phenomenologialrepresentation of the initial exponential step of solid tumour growth, or oftumours of the hematopoieti system. Other models ([27℄) take both spaeand ell yle ontrol into aount, and adding spae as a struturing variable(i.e., designing in the future a model strutured in age, ylin ontent andspae) is an open option.We an hope that a better understanding of the ell yle and its ontrolan be used pratially in aner therapy. Drugs used in aner hemotherapiesa�et only proliferating ells, often in a spei� phase of the ell yle and areoften spei� to partiular proteins of the ell yle. In the future, we will add
RR n° 5941



22 Bekkal Briki, Clairambault, Ribba, Perthameto this model the representation of the e�ets on the ell yle of drugs suh asantagonists of EGFRs (epidermal growth fator reeptors). These reeptors,on stimulation by growth fators, at on the G1 phase induing quiesent ellsto enter into the proliferating phase and these drugs, whih are more andmore widely used in linis, inhibit this reruitment. We will also separatethe proliferating phase (=the omplete ell division yle) into spei� phases(G1/S-G2/M) onto whih spei� drugs at, e.g. 5Fluorourail on S phase.Suh modelling priniples will allow us to represent separately the ytotoxie�ets of alkylating agents, suh as e.g. platinum ompounds, non phase-spei�, of antimetabolites, S phase-spei�, as well as the ytostati e�etsof anti EGFR drugs on transitions between quiesent and proliferative states.Taking into aount the e�ets of suh di�erent drugs is indeed a neessityin order to atually help liniians, sine modern treatments in onology useombinations of drugs in standard therapeuti protools.
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