2 research outputs found

    Dynamic usage of alternative splicing exons during mouse retina development

    Get PDF
    Alternative processing of pre-mRNA plays an important role in protein diversity and biological function. Previous studies on alternative splicing (AS) often focused on the spatial patterns of protein isoforms across different tissues. Here we studied dynamic usage of AS across time, during murine retina development. Over 7000 exons showed dynamical changes in splicing, with differential splicing events occurring more frequently in early development. The overall splicing patterns for exclusive and inclusive exons show symmetric trends and genes with symmetric splicing patterns that tend to have similar biological functions. Furthermore, we observed that within the retina, retina-enriched genes that are preferentially expressed at the adult stage tend to have more dynamically spliced exons compared to other genes, suggesting that genes maintaining retina homeostasis also play an important role in development via a series of AS events. Interestingly, the transcriptomes of retina-enriched genes largely reflect the retinal developmental process. Finally, we identified a number of candidate cis-regulatory elements for retinal AS by analyzing the relative occurrence of sequence motifs in exons or flanking introns. The occurrence of predicted regulatory elements showed strong correlation with the expression level of known RNA binding proteins, suggesting the high quality of the identified cis-regulatory elements

    ABCA4 disease progression and a proposed strategy for gene therapy

    No full text
    Autosomal recessive retinal diseases caused by mutations in the ABCA4 gene are being considered for gene replacement therapy. All individuals with ABCA4-disease show macular degeneration, but only some are thought to progress to retina-wide blindness. It is currently not predictable if or when specific ABCA4 genotypes will show extramacular disease, and how fast it will progress thereafter. Early clinical trials of focal subretinal gene therapy will aim to arrest disease progression in the extramacular retina. In 66 individuals with known disease-causing ABCA4 alleles, we defined retina-wide disease expression by measuring rod- and cone-photoreceptor-mediated vision. Serial measurements over a mean period of 8.7 years were consistent with a model wherein a normal plateau phase of variable length was followed by initiation of retina-wide disease that progressed exponentially. Once initiated, the mean rate of disease progression was 1.1 log/decade for rods and 0.45 log/decade for cones. Spatio-temporal progression of disease could be described as the sum of two components, one with a central-to-peripheral gradient and the other with a uniform retina-wide pattern. Estimates of the age of disease initiation were used as a severity metric and contributions made by each ABCA4 allele were predicted. One-third of the non-truncating alleles were found to cause more severe disease than premature truncations supporting the existence of a pathogenic component beyond simple loss of function. Genotype-based inclusion/exclusion criteria and prediction of the age of retina-wide disease initiation will be invaluable for selecting appropriate candidates for clinical trials in ABCA4 disease
    corecore