404 research outputs found

    Ecological mechanisms of extinction

    Full text link

    Factors shaping the ontogeny of vocal signals in a wild parrot

    Get PDF
    Parrots rely heavily on vocal signals to maintain their social and mobile lifestyles. We studied vocal ontogeny in nests of wild green-rumped parrotlets (Forpus passerinus) in Venezuela. We identified three successive phases of vocal signaling that corresponded closely to three independently derived phases of physiological development. For each ontogenetic phase, we characterized the relative importance of anatomical constraints, motor skills necessary for responding to specific contexts of the immediate environment, and the learning of signals that are necessary for adult forms of communication. We observed shifts in the relative importance of these three factors as individuals progressed from one stage to the next; there was no single fixed ratio of factors that applied across the entire ontogenetic sequence. The earliest vocalizations were short in duration, as predicted from physical constraints and under-developed motor control. Calls became longer and frequency modulated during intermediate nestling ages in line with motor skills required for competitive begging. In the week before fledging, calls drastically shortened in accordance with the flight-constrained short durations of adult contact calls. The latter constraints were made evident by the demonstrated links between wing-assisted incline running, a widespread prelude to avian flight, just before the shift from long-duration begging calls to short-duration contact calls. At least in this species, the shifting emphases of factors at different ontogenetic stages precluded the morphing of intermediate-stage begging calls into adult contact calls; as shown previously, the latter are influenced by sample templates provided by parents

    Opposing selection and environmental variation modify optimal timing of breeding

    Full text link
    Studies of evolution in wild populations often find that the heritable phenotypic traits of individuals producing the most offspring do not increase proportionally in the population. This paradox may arise when phenotypic traits influence both fecundity and viability and when there is a tradeoff between these fitness components, leading to opposing selection. Such tradeoffs are the foundation of life history theory, but they are rarely investigated in selection studies. Timing of breeding is a classic example of a heritable trait under directional selection that does not result in an evolutionary response. Using a 22-y study of a tropical parrot, we show that opposing viability and fecundity selection on the timing of breeding is common and affects optimal breeding date, defined by maximization of fitness. After accounting for sampling error, the directions of viability (positive) and fecundity (negative) selection were consistent, but the magnitude of selection fluctuated among years. Environmental conditions (rainfall and breeding density) primarily and breeding experience secondarily modified selection, shifting optimal timing among individuals and years. In contrast to other studies, viability selection was as strong as fecundity selection, late-born juveniles had greater survival than early-born juveniles, and breeding later in the year increased fitness under opposing selection. Our findings provide support for life history tradeoffs influencing selection on phenotypic traits, highlight the need to unify selection and life history theory, and illustrate the importance of monitoring survival as well as reproduction for understanding phenological responses to climate change

    Large fluctuations in stochastic population dynamics: momentum space calculations

    Full text link
    Momentum-space representation renders an interesting perspective to theory of large fluctuations in populations undergoing Markovian stochastic gain-loss processes. This representation is obtained when the master equation for the probability distribution of the population size is transformed into an evolution equation for the probability generating function. Spectral decomposition then brings about an eigenvalue problem for a non-Hermitian linear differential operator. The ground-state eigenmode encodes the stationary distribution of the population size. For long-lived metastable populations which exhibit extinction or escape to another metastable state, the quasi-stationary distribution and the mean time to extinction or escape are encoded by the eigenmode and eigenvalue of the lowest excited state. If the average population size in the stationary or quasi-stationary state is large, the corresponding eigenvalue problem can be solved via WKB approximation amended by other asymptotic methods. We illustrate these ideas in several model examples.Comment: 20 pages, 9 figures, to appear in JSTA

    Predation and infanticide influence ideal free choice by a parrot occupying heterogeneous tropical habitats

    Get PDF
    The ideal free distribution (IFD) predicts that organisms will disperse to sites that maximize their fitness based on availability of resources. Habitat heterogeneity underlies resource variation and influences spatial variation in demography and the distribution of populations. We relate nest site productivity at multiple scales measured over a decade to habitat quality in a box-nesting population of Forpus passerinus (green-rumped parrotlets) in Venezuela to examine critical IFD assumptions. Variation in reproductive success at the local population and neighborhood scales had a much larger influence on productivity (fledglings per nest box per year) than nest site or female identity. Habitat features were reliable cues of nest site quality. Nest sites with less vegetative cover produced greater numbers of fledglings than sites with more cover. However, there was also a competitive cost to nesting in high-quality, low-vegetative cover nest boxes, as these sites experienced the most infanticide events. In the lowland local population, water depth and cover surrounding nest sites were related with F. passerinus productivity. Low vegetative cover and deeper water were associated with lower predation rates, suggesting that predation could be a primary factor driving habitat selection patterns. Parrotlets also demonstrated directional dispersal. Pairs that changed nest sites were more likely to disperse from poor-quality nest sites to high-quality nest sites rather than vice versa, and juveniles were more likely to disperse to, or remain in, the more productive of the two local populations. Parrotlets exhibited three characteristics fundamental to the IFD: habitat heterogeneity within and between local populations, reliable habitat cues to productivity, and active dispersal to sites of higher fitness

    MSMC and MSMC2: the multiple sequentially markovian coalescent

    Get PDF
    The Multiple Sequentially Markovian Coalescent (MSMC) is a population genetic method and software for inferring demographic history and population structure through time from genome sequences. Here we describe the main program MSMC and its successor MSMC2. We go through all the necessary steps of processing genomic data from BAM files all the way to generating plots of inferred population size and separation histories. Some background on the methodology itself is provided, as well as bash scripts and python source code to run the necessary programs. The reader is also referred to community resources such as a mailing list and github repositories for further advice

    A new approach to estimate fecundity rate from inter-birth intervals

    Get PDF
    Funded by Department of Energy and Climate Change (UK), BES, ASAB, Greenpeace, Environmental Trust, Scottish Natural Heritage, Scottish Government, Whale and Dolphin Conservation, Talisman Energy (UK) Ltd., DECC, Chevron, Natural Environment Research Council Acknowledgments Funding for this work was provided by the Department of Energy and Climate Change (UK). Photo-identification data were collected during a series of grants and contracts from the BES, ASAB, Greenpeace Environmental Trust, Scottish Natural Heritage, Scottish Government, Whale and Dolphin Conservation, Talisman Energy (UK) Ltd., DECC, Chevron, and the Natural Environment Research Council. All survey work was carried out under Scottish Natural Heritage Animal Scientific Licences. The authors have no conflict of interest to declare. We thank Mark Bravington for his helpful advice at the early stages of this work and two anonymous reviewers for their useful comments on the manuscript.Peer reviewedPublisher PD

    Testing a Mahalanobis Distance Model of Black Bear Habitat Use in the Ouachita Mountains of Oklahoma

    Get PDF
    Regional wildlife–habitat models are commonly developed but rarely tested with truly independent data. We tested a published habitat model for black bears (Ursus americanus) with new data collected in a different site in the same ecological region (i.e., Ouachita Mountains of Arkansas and Oklahoma, USA). We used a Mahalanobis distance model developed from relocations of black bears in Arkansas to produce a map layer of Mahalanobis distances on a study area in neighboring Oklahoma. We tested this modeled map layer with relocations of black bears on the Oklahoma area. The distributions of relocations of female black bears were consistent with model predictions. We conclude that this modeling approach can be used to predict regional suitability for a species of interest
    • …
    corecore