54 research outputs found

    Are we missing the target? Are we aiming too low? What are the aerobic exercise prescriptions and their effects on markers of cardiovascular health and systemic inflammation in patients with knee osteoarthritis? A systematic review and meta-analysis

    Get PDF
    © Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ. Objectives We systemically reviewed published studies that evaluated aerobic exercise interventions in patients with knee osteoarthritis (OA) to: (1) report the frequency, intensity, type and time (FITT) of exercise prescriptions and (2) quantify the changes in markers of cardiovascular health and systemic inflammation. Data sources PubMed, CINAHL, Scopus; inception to January 2019. Eligibility criteria Randomised clinical trials (RCT), cohort studies, case series. Design We summarised exercise prescriptions for all studies and calculated effect sizes with 95% CIs for between-group (RCTs that compared exercise and control groups) and within-group (pre-post exercise) differences in aerobic capacity (VO 2), heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) and inflammatory markers (interleukin-6 (IL-6), tumour necrosis factor-alpha). We pooled results where possible using random effects models. Results Interventions from 49 studies were summarised; 8% (4/49) met all FITT guidelines; 16% (8/49) met all or most FITT guidelines. Fourteen studies (10 RCTs) reported at least one marker of cardiovascular health or systemic inflammation. Mean differences (95% CI) indicated a small to moderate increase in VO 2 (0.84 mL/min/kg; 95% CI 0.37 to 1.31), decrease in HR (-3.56 beats per minute; 95% CI -5.60 to -1.52) and DBP (-4.10 mm Hg; 95% CI -4.82 to -3.38) and no change in SBP (-0.36 mm Hg; 95% CI -3.88 to 3.16) and IL-6 (0.37 pg/mL; 95% CI -0.11 to 0.85). Within-group differences were also small to moderate. Conclusions In studies of aerobic exercise in patients with knee OA, very few interventions met guideline-recommended dose; there were small to moderate changes in markers of cardiovascular health and no decrease in markers of systemic inflammation. These findings question whether aerobic exercise is being used to its full potential in patients with knee OA. PROSPERO registration number CRD42018087859

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission

    Get PDF
    BACKGROUND: Malaria is one of the oldest and deadliest infectious diseases in humans. Many mathematical models of malaria have been developed during the past century, and applied to potential interventions. However, malaria remains uncontrolled and is increasing in many areas, as are vector and parasite resistance to insecticides and drugs. METHODS: This study presents a simulation model of African malaria vectors. This individual-based model incorporates current knowledge of the mechanisms underlying Anopheles population dynamics and their relations to the environment. One of its main strengths is that it is based on both biological and environmental variables. RESULTS: The model made it possible to structure existing knowledge, assembled in a comprehensive review of the literature, and also pointed out important aspects of basic Anopheles biology about which knowledge is lacking. One simulation showed several patterns similar to those seen in the field, and made it possible to examine different analyses and hypotheses for these patterns; sensitivity analyses on temperature, moisture, predation and preliminary investigations of nutrient competition were also conducted. CONCLUSIONS: Although based on some mathematical formulae and parameters, this new tool has been developed in order to be as explicit as possible, transparent in use, close to reality and amenable to direct use by field workers. It allows a better understanding of the mechanisms underlying Anopheles population dynamics in general and also a better understanding of the dynamics in specific local geographic environments. It points out many important areas for new investigations that will be critical to effective, efficient, sustainable interventions
    corecore