17 research outputs found

    Hydro-Economic Modelling for Water-Policy Assessment Under Climate Change at a River Basin Scale: A Review

    Get PDF
    Hydro-economic models (HEMs) constitute useful instruments to assess water-resource management and inform water policy. In the last decade, HEMs have achieved significant advances regarding the assessment of the impacts of water-policy instruments at a river basin or catchment level in the context of climate change (CC). This paper o ers an overview of the alternative approaches used in river-basin hydro-economic modelling to address water-resource management issues and CC during the past decade. Additionally, it analyses how uncertainty and risk factors of global CC have been treated in recent HEMs, o ering a discussion on these last advances. As the main conclusion, current challenges in the realm of hydro-economic modelling include the representation of the food-energy-water nexus, the successful representation of micro-macro linkages and feedback loops between the socio-economic model components and the physical side, and the treatment of CC uncertainties and risks in the analysis

    German pig farmers' perceived agency under different nitrogen policies

    Get PDF
    Agricultural nitrogen (N) emissions represent the most substantial N source in Germany. Even though multiple policies have been introduced at the EU and German national level to reduce agriculturally sourced reactive Nitrogen (N), Germany is exceeding the target of the government’s national sustainability strategy to limit N surpluses. To form a better view of the current N policy challenges, this paper seeks to identify what constrains family-managed pig farmers in Germany from adopting N-reduced farming practices. Our study applies a practice-based approach and reconstructs farmers’ practice and individual perception of the possible capability to change practices (perceived agency) through problem-centred interviews. The study identifies different ideal types of farmers based on their reported farming practices and perceived agency: The first type feeling overburdened and weary of the current requirements, the second type acting based on routine and incremental improvement efforts, and the third type adapting early and inventing. However, regarding the perceived agency to adopt N-reduced farming practices our results show that all three farmer types report only low to little agency. Based on the findings, the study identifies type-specific and type-spanning constraining factors. To resolve farmers’ perceived contradictions and inconsistencies which result in the unwillingness to accept further N reduction measures, we argue that policies need to address these factors. To enhance long-term paths for sustainable N-reduced farming practices, this study concludes that N policies need to shift towards outcome-oriented policies to create a collective and holistic understanding of the desired outcome while considering their embeddedness into regional and individual contexts.Wellcome Trust and The Rockefeller FoundationPeer Reviewe

    German pig farmers’ perceived agency under different nitrogen policies

    Get PDF
    Agricultural nitrogen (N) emissions represent the most substantial N source in Germany. Even though multiple policies have been introduced at the EU and German national level to reduce agriculturally sourced reactive Nitrogen (N), Germany is exceeding the target of the government’s national sustainability strategy to limit N surpluses. To form a better view of the current N policy challenges, this paper seeks to identify what constrains family-managed pig farmers in Germany from adopting N-reduced farming practices. Our study applies a practice-based approach and reconstructs farmers’ practice and individual perception of the possible capability to change practices (perceived agency) through problem-centred interviews. The study identifies different ideal types of farmers based on their reported farming practices and perceived agency: The first type feeling overburdened and weary of the current requirements, the second type acting based on routine and incremental improvement efforts, and the third type adapting early and inventing. However, regarding the perceived agency to adopt N-reduced farming practices our results show that all three farmer types report only low to little agency. Based on the findings, the study identifies type-specific and type-spanning constraining factors. To resolve farmers’ perceived contradictions and inconsistencies which result in the unwillingness to accept further N reduction measures, we argue that policies need to address these factors. To enhance long-term paths for sustainable N-reduced farming practices, this study concludes that N policies need to shift towards outcome-oriented policies to create a collective and holistic understanding of the desired outcome while considering their embeddedness into regional and individual contexts

    Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach

    Get PDF
    The human-earth system is confronted with the challenge of providing a range of resources for a growing and more prosperous world population while simultaneously reducing environmental degradation. The sustainable development goals and the planetary boundaries define targets to manage this challenge. Many of these are linked to the land system, such as biodiversity, water, food, nutrients and climate, and are strongly interconnected. A key question is how measures can be designed in the context of multi-dimensional sustainability targets to exploit synergies. To address this, a nexus approach is adopted that acknowledges the interconnectedness between the important sub-systems water, land, food, and climate. This study quantifies synergies and trade-offs from ambitious interventions in different components of this water-land-fod-climate nexus at the global scale. For this purpose, a set of six harmonized scenarios is simulated with the model of agricultural production and its impact on the environment and Integrated model to assess the global environment models. The multi-model approach improves robustness of the results while shedding light on variations coming from different modelling approaches. Our results show that measures in the food component towards healthy diets with low meat consumption have synergies with all other nexus dimensions: Increased natural land improving terrestrial biodiversity (+4% to +8%), lower greenhouse gas emissions from land (−45% to −58%), reduced irrigation water withdrawals to protect or restore hydrological environmental flows (−3% to −24%), and reductions in nitrogen surpluses (−23% to −35%). Climate mitigation measures in line with the Paris Agreement have trade-offs with the water and food components of the nexus, as they adversely affect irrigation water withdrawals (+5% to +30% in 2050 compared to reference scenario) and food prices (+1% to +20%). The analysis of a scenario combining all measures reveals how certain measures are in conflict while others reinforce each other. This study provides an example of a nexus approach to scenario analysis providing input to the next generation of pathways aiming to achieve multiple dimensions of sustainable development.SHAPEHorizon 2020 Framework Programmehttp://dx.doi.org/10.13039/100010661Deutsche Bundesstiftung Umwelthttp://dx.doi.org/10.13039/100007636Peer Reviewe

    MAgPIE 4 – a modular open-source framework for modeling global land systems

    Get PDF
    The open-source modeling framework MAgPIE (Model of Agricultural Production and its Impact on the Environment) combines economic and biophysical approaches to simulate spatially explicit global scenarios of land use within the 21st century and the respective interactions with the environment. Besides various other projects, it was used to simulate marker scenarios of the Shared Socioeconomic Pathways (SSPs) and contributed substantially to multiple IPCC assessments. However, with growing scope and detail, the non-linear model has become increasingly complex, computationally intensive and non-transparent, requiring structured approaches to improve the development and evaluation of the model. Here, we provide an overview on version 4 of MAgPIE and how it addresses these issues of increasing complexity using new technical features: modular structure with exchangeable module implementations, flexible spatial resolution, in-code documentation, automatized code checking, model/output evaluation and open accessibility. Application examples provide insights into model evaluation, modular flexibility and region-specific analysis approaches. While this paper is focused on the general framework as such, the publication is accompanied by a detailed model documentation describing contents and equations, and by model evaluation documents giving insights into model performance for a broad range of variables. With the open-source release of the MAgPIE 4 framework, we hope to contribute to more transparent, reproducible and collaborative research in the field. Due to its modularity and spatial flexibility, it should provide a basis for a broad range of land-related research with economic or biophysical, global or regional focus

    Assessing policy options for sustainable water use in India’s cereal production system

    No full text
    In India, the production of rice and wheat account for more than 80% of its total agricultural water use. As farming is highly dependent on water availability, rapidly receding water levels require urgent measures to manage withdrawals. We assess policy instruments that can reduce pressures on water resources, while at the same time limiting adverse impacts on water-intensive cereal production systems, land-use changes and economic welfare. To this end, we use a dynamic and integrated partial equilibrium model of agricultural production and its impact on the environment to reflect two options: an increase in energy costs for irrigation water (price-related effects), and alternatively, physical quotas on water withdrawals (quantity-related effects). We conclude that it is possible to increase energy prices for agriculture with minimal impacts on agricultural production, agricultural prices, and trade in cereal crops, and moderately reduce water withdrawals by 2050. We find that the intermediate effects of pricing policies are negative for all indicators as compared to quota policies. However, by 2050, both policies yield similar outcomes for all indicators. Our results offer insights into ways in which these policies drive different mechanisms and trade-offs on important agro-economic indicators, and they offer the choice for water conservation policy decision-making based on other critical factors such as implementation costs

    A triple increase in global river basins with water scarcity due to future pollution

    No full text
    Abstract Water security is at stake today. While climate changes influence water availability, urbanization and agricultural activities have led to increasing water demand as well as pollution, limiting safe water use. We conducted a global assessment of future clean-water scarcity for 2050s by adding the water pollution aspect to the classical water quantity-induced scarcity assessments. This was done for >10,000 sub-basins focusing on nitrogen pollution in rivers by integrating land-system, hydrological and water quality models. We found that water pollution aggravates water scarcity in >2000 sub-basins worldwide. The number of sub-basins with water scarcity triples due to future nitrogen pollution worldwide. In 2010, 984 sub-basins are classified as water scarce when considering only quantity-induced scarcity, while 2517 sub-basins are affected by quantity & quality-induced scarcity. This number even increases to 3061 sub-basins in the worst case scenario in 2050. This aggravation means an extra 40 million km2 of basin area and 3 billion more people that may potentially face water scarcity in 2050. Our results stress the urgent need to address water quality in future water management policies for the Sustainable Development Goals

    Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach

    Get PDF
    The human-earth system is confronted with the challenge of providing a range of resources for a growing and more prosperous world population while simultaneously reducing environmental degradation. The sustainable development goals and the planetary boundaries define targets to manage this challenge. Many of these are linked to the land system, such as biodiversity, water, food, nutrients and climate, and are strongly interconnected. A key question is how measures can be designed in the context of multi-dimensional sustainability targets to exploit synergies. To address this, a nexus approach is adopted that acknowledges the interconnectedness between the important sub-systems water, land, food, and climate. This study quantifies synergies and trade-offs from ambitious interventions in different components of this water-land-fod-climate nexus at the global scale. For this purpose, a set of six harmonized scenarios is simulated with the model of agricultural production and its impact on the environment and Integrated model to assess the global environment models. The multi-model approach improves robustness of the results while shedding light on variations coming from different modelling approaches. Our results show that measures in the food component towards healthy diets with low meat consumption have synergies with all other nexus dimensions: Increased natural land improving terrestrial biodiversity (+4% to +8%), lower greenhouse gas emissions from land (−45% to −58%), reduced irrigation water withdrawals to protect or restore hydrological environmental flows (−3% to −24%), and reductions in nitrogen surpluses (−23% to −35%). Climate mitigation measures in line with the Paris Agreement have trade-offs with the water and food components of the nexus, as they adversely affect irrigation water withdrawals (+5% to +30% in 2050 compared to reference scenario) and food prices (+1% to +20%). The analysis of a scenario combining all measures reveals how certain measures are in conflict while others reinforce each other. This study provides an example of a nexus approach to scenario analysis providing input to the next generation of pathways aiming to achieve multiple dimensions of sustainable development
    corecore