176 research outputs found

    Comparison of stabiliser functions for surface NMR inversions

    Get PDF
    Surface nuclear magnetic resonance is a geophysical technique providing non-invasive aquifer characterization. Two approaches are commonly used to invert surface nuclear magnetic resonance data: (1) inversions involving many depth layers of fixed thickness and (2) few-layer inversions without predetermined layer thicknesses. The advantage of the many-layer approach is that it requires little a priori knowledge. However, the many-layer inversion is extremely ill-posed and regularisation must be used to produce a reliable result. For optimal performance, the selected regularisation scheme must reflect all available a priori information. The standard regularisation scheme for many-layer surface nuclear magnetic resonance inversions employs an L-2 smoothness stabiliser, which results in subsurface models with smoothly varying parameters. Such a stabiliser struggles to reproduce sharp contrasts in subsurface properties, like those present in a layered subsurface (a common near-surface hydrogeological environment). To investigate if alternative stabilisers can be used to improve the performance of the many-layer inversion in layered environments, the performance of the standard smoothness stabiliser is compared against two alternative stabilisers: (1) a stabiliser employing the L-1-norm and (2) a minimum gradient support stabiliser. Synthetic results are presented to compare the performance of the many-layer inversion for different stabiliser functions. The minimum gradient support stabiliser is observed to improve the performance of the many-layer inversion for a layered subsurface, being able to reproduce both smooth and sharp vertical variations of the model parameters. Implementation of the alternative stabilisers into existing surface nuclear magnetic resonance inversion software is straightforward and requires little modification to existing codes

    Increasing the resolution and the signal-to-noise ratio of magnetic resonance sounding data using a central loop configuration

    Get PDF
    Surface nuclear magnetic resonance technique, also called magnetic resonance sounding (MRS), is an emerging geophysical method that can detect the presence and spatial variations of the subsurface water content directly. In this paper, we introduce the MRS central loop geometry, in which the receiver loop is smaller than the transmitter loop and placed in its centre. In addition, using a shielded receiver coil we show how this configuration greatly increases signal-to-noise ratio and improves the resolution of the subsurface layers compared to the typically used coincident loop configuration. We compare sensitivity kernels for different loop configurations and describe advantages of the MRS central loop geometry in terms of superior behaviour of the sensitivity function, increased sensitivity values, reduced noise level of the shielded receiver coil, improved resolution matrix and reduced instrument dead time. With no extra time and effort in the field, central-loop MRS makes it possible to reduce measurement time and to measure data in areas with high anthropogenic noise. The results of our field example agree well with the complementary data, namely airborne electromagnetics, borehole data, and the hydrologic model of the area

    Efficient full decay inversion of MRS data with a stretched-exponential approximation of the distribution

    Get PDF
    We present a new, efficient and accurate forward modelling and inversion scheme for magnetic resonance sounding (MRS) data. MRS, also called surface-nuclear magnetic resonance (surface-NMR), is the only non-invasive geophysical technique that directly detects free water in the subsurface. Based on the physical principle of NMR, protons of the water molecules in the subsurface are excited at a specific frequency, and the superposition of signals from all protons within the excited earth volume is measured to estimate the subsurface water content and other hydrological parameters. In this paper, a new inversion scheme is presented in which the entire data set is used, and multi-exponential behaviour of the NMR signal is approximated by the simple stretched-exponential approach. Compared to the mono-exponential interpretation of the decaying NMR signal, we introduce a single extra parameter, the stretching exponent, which helps describe the porosity in terms of a single relaxation time parameter, and helps to determine correct initial amplitude and relaxation time of the signal. Moreover, compared to a multi-exponential interpretation of the MRS data, the decay behaviour is approximated with considerably fewer parameters. The forward response is calculated in an efficient numerical manner in terms of magnetic field calculation, discretization and integration schemes, which allows fast computation while maintaining accuracy. A piecewise linear transmitter loop is considered for electromagnetic modelling of conductivities in the layered half-space providing electromagnetic modelling of arbitrary loop shapes. The decaying signal is integrated over time windows, called gates, which increases the signal-to-noise ratio, particularly at late times, and the data vector is described with a minimum number of samples, that is, gates. The accuracy of the forward response is investigated by comparing a MRS forward response with responses from three other approaches outlining significant differences between the three approaches. All together, a full MRS forward response is calculated in about 20 s and scales so that on 10 processors the calculation time is reduced to about 34 s. The proposed approach is examined through synthetic data and through a field example, which demonstrate the capability of the scheme. The results of the field example agree well the information from an in-site borehole

    On the interplay between speech perception and production: insights from research and theories

    Get PDF
    The study of spoken communication has long been entrenched in a debate surrounding the interdependence of speech production and perception. This mini review summarizes findings from prior studies to elucidate the reciprocal relationships between speech production and perception. We also discuss key theoretical perspectives relevant to speech perception-production loop, including hyper-articulation and hypo-articulation (H&H) theory, speech motor theory, direct realism theory, articulatory phonology, the Directions into Velocities of Articulators (DIVA) and Gradient Order DIVA (GODIVA) models, and predictive coding. Building on prior findings, we propose a revised auditory-motor integration model of speech and provide insights for future research in speech perception and production, focusing on the effects of impaired peripheral auditory systems

    Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control

    Get PDF
    The answer to the question of how the brain incorporates sensory feedback and links it with motor function to achieve goal-directed movement during vocalization remains unclear. We investigated the mechanisms of voice pitch motor control by examining the spectro-temporal dynamics of EEG signals when non-musicians (NM), relative pitch (RP) and absolute pitch (AP) musicians maintained vocalizations of a vowel sound and received randomized ±100 cents pitch-shift stimuli in their auditory feedback. We identified a phase-synchronized (evoked) fronto-central activation within the theta band (5-8 Hz) that temporally overlapped with compensatory vocal responses to pitch-shifted auditory feedback and was significantly stronger in RP and AP musicians compared with non-musicians. A second component involved a non-phase-synchronized (induced) frontal activation within the delta band (1-4 Hz) that emerged at approximately 1 second after the stimulus onset. The delta activation was significantly stronger in the NM compared with RP and AP groups and correlated with the pitch rebound error (PRE), indicating the degree to which subjects failed to re-adjust their voice pitch to baseline after the stimulus offset. We propose that the evoked theta is a neurophysiological marker of enhanced pitch processing in musicians and reflects mechanisms by which humans incorporate auditory feedback to control their voice pitch. We also suggest that the delta activation reflects adaptive neural processes by which vocal production errors are monitored and used to update the state of sensory-motor networks for driving subsequent vocal behaviors. This notion is corroborated by our findings showing that larger PREs were associated with greater delta band activity in the NM compared with RP and AP groups. These findings provide new insights into the neural mechanisms of auditory feedback processing for vocal pitch motor control

    Anthropogenic wetlands due to over-irrigation of desert areas: A challenging hydrogeological investigation with extensive geophysical input from TEM and MRS measurements

    Get PDF
    During the last century, many large irrigation projects were carried out in arid lands worldwide. Despite a tremendous increase in food production, a common problem when characterizing these zones is land degradation in the form of waterlogging. A clear example of this phenomenon is in the Nubariya depression in theWestern Desert of Egypt. Following the reclamation of desert lands for agricultural production, an artificial brackish and contaminated pond started to develop in the late 1990s, which at present extends for about 2.5 km^2. The available data provide evidence of a simultaneous general deterioration of the groundwater system. An extensive hydrogeophysical investigation was carried out in this challenging environment using magnetic resonance sounding (MRS) and ground-based time-domain electromagnetic (TEM) techniques with the following main objectives: (1) understanding the hydrological evolution of the area; (2) characterizing the hydrogeological setting; and (3) developing scenarios for artificial aquifer remediation and recharge. The integrated interpretation of the geophysical surveys provided a hydrogeological picture of the upper 100-m sedimentary setting in terms of both lithological distribution and groundwater quality. The information is then used to set up (1) a regional groundwater flow and (2) a local density-dependent flow and transport numerical model to reproduce the evolution of the aquifer system and develop a few scenarios for artificial aquifer recharge using the treated water provided by a nearby wastewater treatment plant. The research outcomes point to the hydrological challenges that emerge for the effective management of water resources in reclaimed desert areas, and they highlight the effectiveness of using advanced geophysical and modeling methodologies

    Effect of deep brain stimulation on vocal motor control mechanisms in Parkinson's disease

    Get PDF
    Published online: March 07, 2019motor symptoms in Parkinson's disease (PD); however, its effect on vocal motor function has yielded conflicted and highly variable results. The present study investigated the effects of STN-DBS on the mechanisms of vocal production and motor control. Methods: A total of 10 PD subjects with bilateral STN-DBS implantation were tested with DBS ON and OFF while they performed steady vowel vocalizations and received randomized upward or downward pitch-shift stimuli (±100 cents) in their voice auditory feedback. Results: Data showed that the magnitude of vocal compensation responses to pitch-shift stimuli was significantly attenuated during DBS ON vs. OFF (p = 0.012). This effect was direction-specific and was only observed when subjects raised their voice fundamental frequency (F0) in the opposite direction to downward stimuli (p = 0.019). In addition, we found that voice F0 perturbation (i.e. jitter) was significantly reduced during DBS ON vs. OFF (p = 0.022), and this DBS-induced modulation was positively correlated with the attenuation of vocal compensation responses to downward pitch-shift stimuli (r = +0.57, p = 0.028). Conclusions: These findings provide the first data supporting the role of STN in vocal F0 motor control in response to altered auditory feedback. The DBS-induced attenuation of vocal compensation responses may result from increased inhibitory effects of the subcortical hyperdirect (fronto-subthalamic) pathways on the vocal motor cortex, which can help stabilize voice F0 and ameliorate vocal motor symptoms by impeding PD subjects’ abnormal (i.e. overshooting) vocal responses to alterations in the auditory feedback

    Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback.</p> <p>Results</p> <p>Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli.</p> <p>Conclusions</p> <p>Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.</p

    The effects of stimulus complexity on the preattentive processing of self-generated and nonself voices: an ERP study

    Get PDF
    The ability to differentiate one's own voice from the voice of somebody else plays a critical role in successful verbal self-monitoring processes and in communication. However, most of the existing studies have only focused on the sensory correlates of self-generated voice processing, whereas the effects of attentional demands and stimulus complexity on self-generated voice processing remain largely unknown. In this study, we investigated the effects of stimulus complexity on the preattentive processing of self and nonself voice stimuli. Event-related potentials (ERPs) were recorded from 17 healthy males who watched a silent movie while ignoring prerecorded self-generated (SGV) and nonself (NSV) voice stimuli, consisting of a vocalization (vocalization category condition: VCC) or of a disyllabic word (word category condition: WCC). All voice stimuli were presented as standard and deviant events in four distinct oddball sequences. The mismatch negativity (MMN) ERP component peaked earlier for NSV than for SGV stimuli. Moreover, when compared with SGV stimuli, the P3a amplitude was increased for NSV stimuli in the VCC only, whereas in the WCC no significant differences were found between the two voice types. These findings suggest differences in the time course of automatic detection of a change in voice identity. In addition, they suggest that stimulus complexity modulates the magnitude of the orienting response to SGV and NSV stimuli, extending previous findings on self-voice processing.This work was supported by Grant Numbers IF/00334/2012, PTDC/PSI-PCL/116626/2010, and PTDC/MHN-PCN/3606/2012, funded by the Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) and the Fundo Europeu de Desenvolvimento Regional through the European programs Quadro de Referencia Estrategico Nacional and Programa Operacional Factores de Competitividade, awarded to A.P.P., and by FCT Doctoral Grant Number SFRH/BD/77681/2011, awarded to T.C.info:eu-repo/semantics/publishedVersio

    Voice-selective prediction alterations in nonclinical voice hearers

    Get PDF
    Auditory verbal hallucinations (AVH) are a cardinal symptom of psychosis but also occur in 6-13% of the general population. Voice perception is thought to engage an internal forward model that generates predictions, preparing the auditory cortex for upcoming sensory feedback. Impaired processing of sensory feedback in vocalization seems to underlie the experience of AVH in psychosis, but whether this is the case in nonclinical voice hearers remains unclear. The current study used electroencephalography (EEG) to investigate whether and how hallucination predisposition (HP) modulates the internal forward model in response to self-initiated tones and self-voices. Participants varying in HP (based on the Launay-Slade Hallucination Scale) listened to self-generated and externally generated tones or self-voices. HP did not affect responses to self vs. externally generated tones. However, HP altered the processing of the self-generated voice: increased HP was associated with increased pre-stimulus alpha power and increased N1 response to the self-generated voice. HP did not affect the P2 response to voices. These findings confirm that both prediction and comparison of predicted and perceived feedback to a self-generated voice are altered in individuals with AVH predisposition. Specific alterations in the processing of self-generated vocalizations may establish a core feature of the psychosis continuum.The Authors gratefully acknowledge all the participants who collaborated in the study, and particularly Dr. Franziska Knolle for feedback on stimulus generation, Carla Barros for help with scripts for EEG time-frequency analysis, and Dr. Celia Moreira for her advice on mixed linear models. This work was supported by the Portuguese Science National Foundation (FCT; grant numbers PTDC/PSI-PCL/116626/2010, IF/00334/2012, PTDC/MHCPCN/0101/2014) awarded to APP
    • …
    corecore