1,393 research outputs found

    A Concept for Exploring Western Music Tonality in Physical Space

    Get PDF
    Musical theory about the structure and morphology of Western tonality is quite difficult to teach to young children, due to the relatively complex mathematical concepts behind tonality. Children usually grasp the concepts of musical harmony intuitively through listening to music examples. Placing the 12 notes of the well-tempered scale into a spatial arrangement, in which the proximity of these notes represents their mutual harmonic relationship, would allow to link physical motion through a spatial area with the exploration of music tonality. Music theorists have postulated the Circle of Fifth, the “Spiral Array”, and the “Tonnetz” as paradigms for spatial arrangements of music notes which allow mapping the distance between notes onto their “mutual consonance”. These approaches mostly have been of qualitative nature, leaving the actual numeric parameters of the spatial description undetermined. In this paper, these parameters have been determined, leading to a concrete numerical description of the planar Tonnetz. This allows the design of a physical space in which the music notes are distributed in space according to their musical consonance. Set up in an outdoor area, handheld devices (e.g. PDA) with integrated Global Positioning System can be used to play these notes at their actual physical location. This makes it possible for children to explore this musical space by moving through the real spatial area and experience the relationships of the notes through their proximity. Defining a range for each note as a circular area around each note location, consonant chords can be produced in those areas where those circles overlap. Using this concept, games can be developed in which the listeners have to perform certain tasks related to this musical space. This appears to be a promising approach for the music education of young children who can intuitively learn about music morphology without being explicitly taught about the complex theoretical mathematical background

    Weblogs in Higher Education - Why Do Students (Not) Blog?

    Get PDF
    Positive impacts on learning through blogging, such as active knowledge construction and reflective writing, have been reported. However, not many students use weblogs in informal contexts, even when appropriate facilities are offered by their universities. While motivations for blogging have been subject to empirical studies, little research has addressed the issue of why students choose not to blog. This paper presents an empirical study undertaken to gain insights into the decision making process of students when deciding whether to keep a blog or not. A better understanding of students' motivations for (not) blogging may help decision makers at universities in the process of selecting, introducing, and maintaining similar services. As informal learning gains increased recognition, results of this study can help to advance appropriate designs of informal learning contexts in Higher Education. The method of ethnographic decision tree modelling was applied in an empirical study conducted at the Vienna University of Technology, Austria. Since 2004, the university has been offering free weblog accounts for all students and staff members upon entering school, not bound to any course or exam. Qualitative, open interviews were held with 3 active bloggers, 3 former bloggers, and 3 non‑ bloggers to elicit their decision criteria. Decision tree models were developed out of the interviews. It turned out that the modelling worked best when splitting the decision process into two parts: one model representing decisions on whether to start a weblog at all, and a second model representing criteria on whether to continue with a weblog once it was set up. The models were tested for their validity through questionnaires developed out of the decision tree models. 30 questionnaires have been distributed to bloggers, former bloggers and non‑ bloggers. Results show that the main reasons for students not to keep a weblog include a preference for direct (online) communication, and concerns about the loss of privacy through blogging. Furthermore, the results indicate that intrinsic motivation factors keep students blogging, whereas stopping a weblog is mostly attributable to external factors

    A system for synthetic vision and augmented reality in future flight decks

    Get PDF
    Rockwell Science Center is investigating novel human-computer interaction techniques for enhancing the situational awareness in future flight decks. One aspect is to provide intuitive displays that provide the vital information and the spatial awareness by augmenting the real world with an overlay of relevant information registered to the real world. Such Augmented Reality (AR) techniques can be employed during bad weather scenarios to permit flying in Visual Flight Rules (VFR) in conditions which would normally require Instrumental Flight Rules (IFR). These systems could easily be implemented on heads-up displays (HUD). The advantage of AR systems vs. purely synthetic vision (SV) systems is that the pilot can relate the information overlay to real objects in the world, whereas SV systems provide a constant virtual view, where inconsistencies can hardly be detected. The development of components for such a system led to a demonstrator implemented on a PC. A camera grabs video images which are overlaid with registered information. Orientation of the camera is obtained from an inclinometer and a magnetometer; position is acquired from GPS. In a possible implementation in an airplane, the on-board attitude information can be used for obtaining correct registration. If visibility is sufficient, computer vision modules can be used to fine-tune the registration by matching visual cues with database features. This technology would be especially useful for landing approaches. The current demonstrator provides a frame-rate of 15 fps, using a live video feed as background with an overlay of avionics symbology in the foreground. In addition, terrain rendering from a 1 arc sec. digital elevation model database can be overlaid to provide synthetic vision in case of limited visibility. For true outdoor testing (on ground level), the system has been implemented on a wearable computer

    Effect of friction in a toy model of granular compaction

    Full text link
    We proposed a toy model of granular compaction which includes some resistance due to granular arches. In this model, the solid/solid friction of contacting grains is a key parameter and a slipping threshold Wc is defined. Realistic compaction behaviors have been obtained. Two regimes separated by a critical point Wc* of the slipping threshold have been emphasized : (i) a slow compaction with lots of paralyzed regions, and (ii) an inverse logarithmic dynamics with a power law scaling of grain mobility. Below the critical point Wc*, the physical properties of this frozen system become independent of Wc. Above the critical point Wc*, i.e. for low friction values, the packing properties behave as described by the classical Janssen theory for silos

    The Jamming Transition in Granular Systems

    Get PDF
    Recent simulations have predicted that near jamming for collections of spherical particles, there will be a discontinuous increase in the mean contact number, Z, at a critical volume fraction, phi_c. Above phi_c, Z and the pressure, P are predicted to increase as power laws in phi-phi_c. In experiments using photoelastic disks we corroborate a rapid increase in Z at phi_c and power-law behavior above phi_c for Z and P. Specifically we find power-law increase as a function of phi-phi_c for Z-Z_c with an exponent beta around 0.5, and for P with an exponent psi around 1.1. These exponents are in good agreement with simulations. We also find reasonable agreement with a recent mean-field theory for frictionless particles.Comment: 4 pages, 4 figures, 2 pages supplement; minor changes and clarifications, 2 addtl. refs., accepted for publication in Phys. Rev. Let

    The Virtual Runner Learning Game

    Get PDF
    A learning game has been developed which allows learners to study and learn about the significance of three important variables in human physiology (lactate, glycogen, and hydration) and their influence on sports performance during running. The player can control the speed of the runner, and as a consequence the resulting physiological processes are simulated in real-time. The performance degradation of the runner due to these processes requires that different strategies for pacing the running speed are applied by the player, depending on the total length of the run. The game has been positively evaluated in a real learning context of academic physiology teaching

    Continuous phase transitions with a convex dip in the microcanonical entropy

    Full text link
    The appearance of a convex dip in the microcanonical entropy of finite systems usually signals a first order transition. However, a convex dip also shows up in some systems with a continuous transition as for example in the Baxter-Wu model and in the four-state Potts model in two dimensions. We demonstrate that the appearance of a convex dip in those cases can be traced back to a finite-size effect. The properties of the dip are markedly different from those associated with a first order transition and can be understood within a microcanonical finite-size scaling theory for continuous phase transitions. Results obtained from numerical simulations corroborate the predictions of the scaling theory.Comment: 8 pages, 7 figures, to appear in Phys. Rev.

    Jamming Transition In Non-Spherical Particle Systems: Pentagons Versus Disks

    Get PDF
    We investigate the jamming transition in a quasi-2D granular material composed of regular pentagons or disks subjected to quasistatic uniaxial compression. We report six major findings based on experiments with monodisperse photoelastic particles with static friction coefficient Ό≈1. (1) For both pentagons and disks, the onset of rigidity occurs when the average coordination number of non-rattlers, Znr, reaches 3, and the dependence of Znr on the packing fraction ϕ changes again when Znr reaches 4. (2) Though the packing fractions ϕc1 and ϕc2 at these transitions differ from run to run, for both shapes the data from all runs with different initial configurations collapses when plotted as a function of the non-rattler fraction. (3) The averaged values of ϕc1 and ϕc2 for pentagons are around 1% smaller than those for disks. (4) Both jammed pentagons and disks show Gamma distribution of the Voronoi cell area with same parameters. (5) The jammed pentagons have similar translational order for particle centers but slightly less orientational order for contacting pairs compared to jammed disks. (6) For jammed pentagons, the angle between edges at a face-to-vertex contact point shows a uniform distribution and the size of a cluster connected by face-to-face contacts shows a power-law distribution

    Persuasive Technology for Learning in Business Context

    Get PDF
    "Persuasive Design is a relatively new concept which employs general principles of persuasion that can be implemented in persuasive technology. This concept has been introduced by BJ Fogg in 1998, who since then has further extended it to use computers for changing attitudes and behaviour. Such principles can be applied very well in learning and teaching: in traditional human-led learning, teachers always have employed persuasion as one of the elements of teaching. Persuasive technology moves these principles into the digital domain, by focusing on technology that inherently stimulates learners to learn more quickly and effectively. This is very relevant for the area of Business Management in several aspects: Consumer Behavior, Communications, Human Resource, Marketing & Advertising, Organisational Behavior & Leadership. The persuasive principles identified by BJ Fogg are: reduction, tunnelling, tailoring, suggestion, self-monitoring, surveillance, conditioning, simulation, social signals. Also relevant is the concept of KAIROS, which means the just-in-time, at the right place provision of information/stimulus. In the EuroPLOT project (2010-2013) we have developed persuasive learning objects and tools (PLOTs) in which we have applied persuasive designs and principles. In this context, we have developed a pedagogical framework for active engagement, based on persuasive design in which the principles of persuasive learning have been formalised in a 6-step guide for persuasive learning. These principles have been embedded in two tools – PLOTmaker and PLOTLearner – which have been developed for creating persuasive learning objects. The tools provide specific capability for implementing persuasive principles at the very beginning of the design of learning objects. The feasibility of employing persuasive learning concepts with these tools has been investigated in four different case studies with groups of teachers and learners from realms with distinctly different teaching and learning practices: Business Computing, language learning, museum learning, and chemical substance handling. These case studies have involved the following learner target groups: school children, university students, tertiary students, vocational learners and adult learners. With regards to the learning context, they address archive-based learning, industrial training, and academic teaching. Alltogether, these case studies include participants from Sweden, Africa (Madagascar), Denmark, Czech Republic, and UK. One of the outcomes of this investigation was that one cannot apply a common set of persuasive designs that would be valid for general use in all situations: on the contrary, the persuasive principles are very specific to learning contexts and therefore must be specifically tailored for each situation. Two of these case studies have a direct relevance to education in the realm of Business Management: Business Computing and language learning (for International Business). In this paper we will present the first results from the evaluation of persuasive technology driven learning in these two relevant areas.
    • 

    corecore