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ABSTRACT 

Musical theory about the structure and morphology of Western 

tonality is quite difficult to teach to young children, due to the 

relatively complex mathematical concepts behind tonality. 

Children usually grasp the concepts of musical harmony 

intuitively through listening to music examples. Placing the 12 

notes of the well-tempered scale into a spatial arrangement, in 

which the proximity of these notes represents their mutual 

harmonic relationship, would allow to link physical motion 

through a spatial area with the exploration of music tonality. 

Music theorists have postulated the Circle of Fifth, the “Spiral 

Array”, and the “Tonnetz” as paradigms for spatial 

arrangements of music notes which allow mapping the distance 

between notes onto their “mutual consonance”. These 

approaches mostly have been of qualitative nature, leaving the 

actual numeric parameters of the spatial description 

undetermined. In this paper, these parameters have been 

determined, leading to a concrete numerical description of the 

planar Tonnetz. This allows the design of a physical space in 

which the music notes are distributed in space according to their 

musical consonance. Set up in an outdoor area, handheld 

devices (e.g. PDA) with integrated Global Positioning System 

can be used to play these notes at their actual physical location. 

This makes it possible for children to explore this musical space 

by moving through the real spatial area and experience the 

relationships of the notes through their proximity. Defining a 

range for each note as a circular area around each note location, 

consonant chords can be produced in those areas where those 

circles overlap. Using this concept, games can be developed in 

which the listeners have to perform certain tasks related to this 

musical space.  This appears to be a promising approach for the 

music education of young children who can intuitively learn 

about music morphology without being explicitly taught about 

the complex theoretical mathematical background. 
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1. INTRODUCTION 
Playing in an outdoor space is an activity that is essential to 

childhood [1]: children can learn about their environment 

through motion and physical activity within a spatial context, 

and in games which involve motion through physical space, 

many motoric skills of the developing child are being exercised 

and strengthened, navigation skills and spatial awareness are 

being learned intuitively and “naturally”. This leads to the 

question if this natural learning process can be linked to 

learning about more complex issues in a completely different 

domain, by linking the physical space to certain elements of 

that other domain. Western music tonality, for example, has 

been described by music theorists through spatial arrangement 

of music notes in certain ways which reveal the connection and 

relationship of these music notes. The mathematical 

background of music tonality, consonance, and harmony is 

difficult to grasp by young children [2]. Exploring this musical 

space by employing the metaphor of a real physical space has 

the potential to enable children to learn about the connection 

between music notes in an intuitive playful way. 

A big obstacle in using this metaphor for actual practical 

teaching has been that the numeric description of the music 

morphology space had been not completely determined: in 

many theories only quantitative descriptions of the relation 

between the notes have been postulated, leaving several 

variables open to arbitrary values and preventing a unique 

mapping into physical space. 

We have investigated the numeric parametrisation of the 

“Tonnetz”, which is a planar arrangement of music notes 

according to their “consonance”, and have been able to 

determine all numeric parameters describing this model. This 

allows now to design a physical space, where locations are 

associated with musical notes, being able to be explored by 

children. 

In chapter 2 an overview will be given on the theoretical 

models. Chapter 3 contains the derivation of the numerical 

metric for the Tonnetz model, and Chapter 4 contains 

suggestions for using this in a learn-by-play environment for 

teaching children about the musical morphology of Western 

tonal music. 
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Table 1. The harmonics of a string and the related intervals. 

 Base 1
st
 harmonic 2

nd
 harmonic 3

rd
 harmonic 4

th
 harmonic 5

th
 harmonic 6

th
 harmonic 

Multiple of f 1 x f 2 x f 3 x f 4 x f 5 x f 6 x f 7 x f 

Example key: C 
major 

C1 C2 G2 C3 E3 G3 A#3 

Interval  Octave Quint Quart Major Third Minor Third Minor Third 

 

2. THEORETICAL BACKGROUND 

2.1 Well-Tempered 12-Tone Music Space 
Music in the Western tradition has evolved into using scales 

with 12 discrete tones. Originally in Antiquity, these tones have 

been defined by the ratios of their frequencies and resulted in 

the “just intonation” of the diatonic scale. If musical 

instruments are tuned according to this type of scale, music 

played on these instruments cannot transition between scales, as 

the frequency ratios between the notes in an interval are 

different after transposition. In the past three centuries, the 

well-tempered scale has been adopted by slightly shifting tones 

in the scales until the ratio between each set of two neighboring 

tones is 21/12. This scale allows each tone in the scale to become 

the base tone of a new scale, as the ratio between the scale tones 

remains invariant in this transposition. This has allowed 

Western music to modulate between different scales, often 

using ambiguities of chords which belong to different scales as 

the links between those scales. The Musical Instrument Digital 

Interface (MIDI) standard has incorporated this well-tempered 

12-tone scale and has defined a set of integer numbers to 

represent the notes in this scale. 

2.2 Consonant and Dissonant Intervals 
It is of interest for musical analysis to sort the notes of the well-

tempered scale in such a way that “consonant” notes are close 

to each other, and “dissonant” notes are further apart from each 

other. The reason for such an order is to have an immediate 

measure for the dissonance, which then allows quantifying 

dissonance in a music piece. In order to achieve this, one needs 

first to define the terms “consonant” and “dissonant”, as the 

meaning of these terms has been somewhat blurred in the 20th 

century classical music.  

 

The definition of musical closeness in traditional music 

conventions can be derived from the harmonics of a string as 

integer multiples of the base frequency (see Table 1): the first 

few upper harmonics (<8) are perceived to be more consonant 

than the higher upper harmonics. This indicates that the octave 

is the most consonant interval, followed by the Fifth (Quint), 

the Quart, the Major Third and the Minor Third. 

In general, the intervals between two tones are more 

“consonant” if the integer numbers in the ratio of the 

frequencies are smaller. The combination of three notes with 

those intervals leads to the traditional tri-chords of Western 

classical music. When just considering the notes without the 

octave transposition, then Quint (Fifth) and Quart (Fourth) 

actually are equivalent, representing the same two notes. 

Similar, Major and Minor Third can be considered as equivalent 

in terms of their consonance, as inserting the 4th harmonic (e.g. 

E) into the Fifth interval (e.g. C-G) automatically creates both 

the Major and the Minor Third. 

2.3 The Circle of Fifths 
The most elementary graphical representation of the 12 notes of 

the well-tempered scale is the Circle of Fifths. In this graph the 

12 notes of a scale (modulo octave transpositions) are placed 

onto a circle: neighboring notes are separated by a fifth interval, 

hereby showing the two most consonant intervals. For the sake 

of simplicity, from here on the C key scale is assumed as the 

base scale in this paper. The results for any other scale can 

easily be achieved by transposition. 

 

Figure 1. The Circle of Fifth. 

The Quint circle (Circle of Fifth) representation in Figure 1 

shows correctly the proximity of two notes separated by a Fifth 

and also represents the Tritone (C-F#) as the furthest apart note 

pair. However, after two consecutive transformations by a Fifth 

transposition (C→G→D), the resulting interval is a Second. 

When interpreting the distance of the notes as a measure of 

consonance, the graphical representation indicates that a Second 

would be closer in tonality than a Third (which comes after a 3rd 

transposition (C→G→D→A). This is not in accordance with 

the definition of tonality in 2.2.  

2.4 The Spiral Array 
In her PhD thesis, Elaine Chew [3] proposed a modification of 

this Circle of Fifth, using the 3rd dimension to overcome this 

problem of the Third being further apart than the Second: the 

circle is bent into a spiral in such a way that one full 360 deg 

rotation of the spiral contains 4 consecutive notes from the 

Circle of Fifths. This brings the Third interval notes closer 

together than the Second, as shown in Figure 2. For example, 

the interval C-D is now represented by a larger distance than 

the intervals C-G or C-E. The morphology of this visualization 

means that the full Circle of Fifth is completed in 3 spiral loops 

(C-G-D-A-E, E-B-F#-C#-G#, G#-D#-A#-E#-C).  

 

Introducing h as the spiral height of one full rotation (in Chew’s 

work, 4h is chosen for this height) and r as its radius, the 

distance between the notes of a Major Third (M3) is h. The 

distance of a Fifth which is the smallest distance between two 

notes, becomes  . The distance of a Minor Third 

(m3) becomes  

 



 

Figure 2. Chew's Spiral Array (adapted from [3]). 

2.5 The Minor and Major Third 
The Spiral Array model has been proven to be a valuable tool 

for qualitative analysis of music in terms of structure, key 

chords, tonality etc. There are, however, limitations of this 

model, when a precise quantification of the tonality relations is 

sought. Especially the exact value of the ratio h/r needs to be 

determined, in order to evaluate the precise spatial relationships 

of the notes. By applying musical theorems, Chew could 

determine boundaries for this ratio. For example, the Fifth has a 

smaller distance than M3, which leads to a boundary condition 

for the ratio  . Chew put forward more constraints 

and obtained an upper limit for  . One of those 

theorems is that the Minor Third interval is further apart than 

the Major Third interval. There is, however, no strong argument 

for them being different. Under the assumption that M3 and m3 

are equivalent (in the same way as Fifth and Fourth are 

equivalent) as assumed in this paper here, the ratio becomes: 

 

The spatial arrangements of the notes on the spiral would 

actually have to be mapped onto a torus. Chew proposed to 

wrap the surface of the spiral onto a torus, which would 

represent better the invariance to the octave transposition of 

notes: the surface needs to be closed so that the periodicity is 

represented properly. This means that after 3 spiral rotations the 

surface of the spiral is closed. For a correct quantification of the 

distances between the notes, these distances would have to be 

computed in the 3D torus model.  

2.6 The Tonnetz 
In 1739, the mathematician Leonard Euler developed a planar 

arrangement of the 12 musical notes called the “Ton-Netz” 

(tone net) [4]. In the 19th century, the music-mathematician 

Hugo Riemann [5] has further developed this model. In this 

note arrangement, the proximity of the notes indicates their 

closeness in consonance. Again, the closest distance between 

notes is the Fifth. Basically, the Ton-Netz is a series of 

linearized Circles-of-Fifth, put next to each other. Implicitly, 

through the invariance towards octave transposition, this 

representation contains the Spiral Array. In recent years it has 

inspired further research into music morphology (e.g. [7][9]), as 

this model appears to represent well the human listener [8]. 

 

The Tonnetz can be considered as a planar structure built from 

a repetitive cell pattern, where the unit cell is being defined as a 

parallelogram with the same note on each of its 4 corners. An 

example of such a unit cell with the note C is shown in Figure 

3. This unit cell contains all 12 notes. 

 

Much work has been done regarding describing and studying 

the qualitative aspects of this structure and its meaning for 

music (e.g. [6]) by defining transformations and applying graph 

theory, but the specific numerical values have not been 

determined. Without loss of generality, the distance between 

Fifth (along the Fifth axis) can be set as the unit distance to be f 

= 1. This needs to be the smallest distance between two 

neighboring notes. The construction of the Tonnetz based on 

the set of parallel Fifth axes introduces two more parameters: d 

= distance between two adjacent Fifth lines, and s = shift 

between these two Fifth axes. The distance d needs to be set so 

that the unit distance still is the smallest distance between two 

notes. The Fifth axes are placed in such a way that the tones of 

one axis are neighbors to the Third notes on the closest parallel 

axis. This leaves the shift s only to indicate how the relation 

between Major and Minor Thirds are: a value of s = 0 will place 

the Major Third as the shortest distance (C across to E), a value 

of 1 will place the Minor Third as the shortest distance (C 

across to A). A value of s = 0.5 indicates the same distance of 

Major and Minor Third. This is what is assumed in this paper, 

as discussed earlier. A further parameter is introduced here: t = 

the distance of the Third.  

 

3. METRIC 

3.1 Torus Model 
The unit cell in Figure 3 

forms the surface of a 

torus, as it is a continuous 

closed surface. This is the 

result from the invariance 

towards transposition by 

an octave: the notes after 

octave transposition are 

assumed to be identical. In 

order to fulfill the 

condition that this 

parallelogram can be 

turned into a torus surface, 

the individual note 

locations at the cell 

(1) 

 
C - G - D - A – E – B – F#- C# -G#- D#- A#- F – C – G – D – A - … 
 \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 
… D#- A#- F – C – G – D – A – E – B – F#- C#- G#- D#- A#- F - C …    
 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / 
B – F#- C#- G#- D#- A#- F – C – G – D – A – E – B – F#- C#- G#- … 
 \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 
… D – A – E – B – F#- C#- G#- D#- A#- F – C - G – D – A – E – B … 
 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / 
A#- F – C – G – D – A – E – B – F#- C#- G#- D#- A#- F – C - G - …  
 \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 
… C#- G#- D#- A#- F – C – G – D – A – E – B – F#- C#- G#- D#- A#… 
 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / 
A – E – B – F#- C#- G#- D#- A#- F – C - G – D – A – E – B – F#- … 
 \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 
… C – G – D – A – E – B – F#- C#- G#- D#- A#- F – C - G – D – A … 
 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / 
G#- D#- A#- F – C – G – D – A – E – B – F#- C#- G#- D#- A#- F - … 
 \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 
… B – F#- C#- G#- D#- A#- F – C – G – D – A – E – B – F#- C#- G#… 
 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / 
  G - D – A – E – B – F#- C#- G#- D#- A#- F – C - G – D – A – E - … 

Figure 3. Riemann’s Tonnetz [5]. A “unit cell” with the note C at its corners is highlighted. 
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borders need to match up: this leads to the requirement that the 

spatial note arrangement must be in such a way that a rectangle 

must be able to be placed onto the surfaces so that its four 

corners are coinciding with identical notes (e.g. C). When 

trying to fit a rectangle onto the Tonnetz surface with its 

corners at the note C, the underlying Tonnetz needs to be 

deformed until the notes C match with the corners of this 

rectangle. This is done by varying the distance of the lines of 

Fifths (C-G-D-A-…), i.e. the distance between the Thirds. In 

Figure 4 the unit cell rectangle is shown (with the sides as the 

Third axes) together with the parallelogram which is a result of 

this transformation. The parallelogram needs to be created by a 

rotation of the notes array around one corner point C. This will 

increase the distance C-B, but will reduce the distance G#-D# 

(along the lines of Fifth). The sides and therefore the Third 

distance t (e.g. C-D#) remain constant. 

 

 

Figure 4. The rectangular unit cell and the parallelogram 

that is created through rotation of the “long” axis around C. 

The boundary condition of having the Fifth distance being the 

shortest distance is violated in the case of the straight rectangle: 

for example, the interval C-G is on the diagonal path and 

therefore is longer than each of the two bordering sides C-D# 

and C-E. This means that the plain rectangular shape of the unit 

cell with borders along notes is not permissible for the torus 

structure.  

 

The resulting parallelogram has its two sides 3t and 4t long. 

This determines the angle of the parallelogram:  α = arcos(3/4) 

= 41.41°. Further geometric considerations lead to the Fifth 

distance   = 0.707 t. This can also be obtained 

without explicit angle calculation and results in the value for 

. Having assumed this Fifth interval f = 1, the 

resulting value for   For the spacing of the Fifth axes, 

equation (1) provides the result: 

 

This now determines the full spatial structure of the quantitative 

Tonnetz and allows quantitative analysis of music. It is 

interesting that another outcome of this particular arrangement 

of notes is that the distance between a Second interval has the 

value 2. The most relevant intervals are shown in Error! 

Reference source not found.. 

Table 2. Interval distances in the quantified Tonnetz. 

Interval Fifth Third Second 

distance 1  2 

 

3.2 Chord Consonance 
Each note in the Tonnetz can be assigned a “range”, at which 

the sound of the note can be heard. This leads to overlapping 

circles in the Tonnetz. These overlapping regions (Figure 5) are 

the areas where chords can be heard. Due to the nature of the 

note arrangement in the Tonnetz, where “consonant” notes are 

close to each other, these chords are harmonic in the sense 

defined in section 2.2. The radius of those circles determines 

the range where the note can be heard. It needs to be chosen so 

that the Fifth and the Third interval produce an overlap, 

resulting in harmonious chords. Where two circles overlap, a 

duo-chord can be heard. In the region where 3 circles overlap, a 

tri-chord can be heard, consisting of a Fifth and the Third in the 

middle (either minor or Major).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Overlap of note sound. Concentric circles are 

shown with radius = 0.5 (inner circle) and radius = 1 (outer 

circles). 

 

4. LEARNING GAMES 

4.1 System Implementation 
To put the concept of the planar Tonnetz into a learning game, a 

mobile device is needed for each pupil which has a location 

sensing mechanism and a tool for replaying audio. Suitable 

devices for such an implementation are PDAs and mobile 

phones with integrated Global Positioning System (GPS). The 

precision of GPS is about 1-3m, which means that the Tonnetz 

grid needs to be large enough to be tolerant to this location 

inaccuracy. Also, non-kinematic GPS provides only updates 

once per second, which means that the note grid has to be set up 

large enough, to prevent that a fast using user accidentally skips 

a note. The Tonnetz would need to be setup not just as one unit 

cell, but as a tiled pattern of unit cells, allowing different kinds 

of user motions across the note arrays without boundary limits. 

 

Hewlett Packard (HP) has developed the generic development 

environment MSCAPE for setting up location-based 

applications (Mediascapes) on a Windows Mobile powered 

device with GPS. It supports triggering events when the device 

reaches certain locations. The code is based on Java and allows 

a flexible reaction to user motion within physical space. We 

have recorded a set of 12 wavefiles, one for each tone. The 

array of tones has then been set up as a Tonnetz, using the 

geometry relation that has been derived in chapter 3. One 

variable parameter can be set externally: the distance between 

the Fifth f determines the extent of the Tonnetz unit cell. This 

parameter can be adapted to the dimension of the available 

space in which the users can move about. When the device is 

within the range and vicinity of a note, its wave file is being 

played. If the user is within the vicinity of several notes, they 

C – D#- F#- A – C  

|   |   |   |   | 

G#- B – D – F – G# 

|   |   |   |   | 

E – G – A#- C#- E 

|   |   |   |   | 

C – D#- F#- A - C 

α 
 

(3) 



are all being played simultaneously, providing consonant tri-

chords. 

4.2 Games Ideas 
One possible game could be that the pupils need to reach each 

note only once: when reaching a unique note, the user receives 

reward points. When a note is reached a second time, points are 

subtracted. This playful spatial exploration has the potential to 

sharpen the perception of atonal 12-tone music in which no 

single tone has the preference for being a base tone. 

  

Another game would be to “play” a melody, a sequence of note 

in a given order, by walking across the spatial Tonnetz. Points 

are collected for each correctly reached note location, points are 

subtracted for false notes. This can sharpen the child’s 

perception of note relationships, as the spatial arrangement does 

not relate to notes which are neighboring in the pitch scale, but 

are neighboring in the functional sense. 

 

The motion across the Tonnetz also can highlight the meaning 

of music cadences: these are sequences of closely related 

chords, which are in fact closely spaced in the Tonnetz 

representation. Simply moving across the space makes the user 

experience the relationship of notes and chords within the 

Western tonality space. 

 

This spatial music exploration tool can also be used for creative 

purposes: children can be asked to “compose” a piece of music 

by simply moving across the Tonnetz in a pattern they choose. 

The mobile device can record the notes, and in the end each 

child can reply their recorded music work. 

5. CONCLUSION AND OUTLOOK 
A concept has been shown for linking playful spatial outdoor 

games with an understanding of musical relationships of 

Western music tonality. Mathematical boundary conditions 

have led to an exact numeric quantification of the spatial 

parameters of the Tonnetz, which then in turn can be mapped 

onto a real physical space. Mobile phone or PDAs with 

integrated GPS can be used as devices for exploring this 

physical space, as they can play the notes linked to the nodes of 

the Tonnetz.  

This concept has not yet been tested with children. It would be 

interesting to conduct such a pilot study with an actual class of 

young children and assess the potential and effectiveness of this 

approach for music education. This can be done in partnership 

with local schools. 

 

It needs to be noted that the well-tempered 12-tone musical 

space is something that is only attributable to the Western 

cultural domain. There are other possible music morphology 

concepts which are based on different intervals. One would 

need to set up a spatial implementation of those concepts, 

which will result in different spatial notes arrangements.  
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