463 research outputs found

    A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: Triangular grids

    Full text link
    A novel wetting and drying treatment for second-order Runge-Kutta discontinuous Galerkin (RKDG2) methods solving the non-linear shallow water equations is proposed. It is developed for general conforming two-dimensional triangular meshes and utilizes a slope limiting strategy to accurately model inundation. The method features a non-destructive limiter, which concurrently meets the requirements for linear stability and wetting and drying. It further combines existing approaches for positivity preservation and well-balancing with an innovative velocity-based limiting of the momentum. This limiting controls spurious velocities in the vicinity of the wet/dry interface. It leads to a computationally stable and robust scheme -- even on unstructured grids -- and allows for large time steps in combination with explicit time integrators. The scheme comprises only one free parameter, to which it is not sensitive in terms of stability. A number of numerical test cases, ranging from analytical tests to near-realistic laboratory benchmarks, demonstrate the performance of the method for inundation applications. In particular, super-linear convergence, mass-conservation, well-balancedness, and stability are verified

    A well-balanced meshless tsunami propagation and inundation model

    Full text link
    We present a novel meshless tsunami propagation and inundation model. We discretize the nonlinear shallow-water equations using a well-balanced scheme relying on radial basis function based finite differences. The inundation model relies on radial basis function generated extrapolation from the wet points closest to the wet-dry interface into the dry region. Numerical results against standard one- and two-dimensional benchmarks are presented.Comment: 20 pages, 13 figure

    Triangular grids

    Get PDF
    A novel wetting and drying treatment for second‐order Runge‐Kutta discontinuous Galerkin methods solving the nonlinear shallow‐water equations is proposed. It is developed for general conforming two‐dimensional triangular meshes and utilizes a slope limiting strategy to accurately model inundation. The method features a nondestructive limiter, which concurrently meets the requirements for linear stability and wetting and drying. It further combines existing approaches for positivity preservation and well balancing with an innovative velocity‐based limiting of the momentum. This limiting controls spurious velocities in the vicinity of the wet/dry interface. It leads to a computationally stable and robust scheme, even on unstructured grids, and allows for large time steps in combination with explicit time integrators. The scheme comprises only one free parameter, to which it is not sensitive in terms of stability. A number of numerical test cases, ranging from analytical tests to near‐realistic laboratory benchmarks, demonstrate the performance of the method for inundation applications. In particular, superlinear convergence, mass conservation, well balancedness, and stability are verified

    Comparison of various coupling methods for 1D diffusion equations with a analytical solution of two phase Stefan problem

    Get PDF
    We implemented loose and tight coupling methods to understand thermal diffusion between ocean and ice by means of a simplified one-dimensional model set-up proposed by Stefan. A Stefan problem is a prototypical two-phase model that can used to model, for example, melting and freezing of water due to the transfer of heat fluxes between the two phases. We discretized heat fluxes using low order derivatives for loose coupling and higher order derivatives for tight coupling while fluxes are computed at the (moving) interface. Compared to a known reference solution the tight coupling method exhibits a lower error when compared to the loose coupling discretization. However, further numerical tests are required to analyze these coupling methods

    Credible Worst Case Tsunami Scenario Simulation for Padang

    Get PDF
    Padang in West-Sumatra is one of the priority regions of the German-Indonesian Tsunami Early Warning System project (GITEWS). From 2006 onwards, Alfred Wegener Institute (AWI) as the lead organization within GITEWS for simulation products, has contributed simulation results and inundation map information to the community of Padang. In this memorandum, we intend to communicate latest results of our simulations

    Metrics for Performance Quantification of Adaptive Mesh Refinement

    Get PDF
    Non-uniform, dynamically adaptive meshes are a useful tool for reducing computational complexities for geophysical simulations that exhibit strongly localised features such as is the case for tsunami, hurricane or typhoon prediction. Using the example of a shallow water solver, this study explores a set of metrics as a tool to distinguish the performance of numerical methods using adaptively refined versus uniform meshes independent of computational architecture or implementation. These metrics allow us to quantify how a numerical simulation benefits from the use of adaptive mesh refinement. The type of meshes we are focusing on are adaptive triangular meshes that are non-uniform and structured. Refinement is controlled by physics-based indicators that capture relevant physical processes and determine the areas of mesh refinement and coarsening. The proposed performance metrics take into account a number of characteristics of numerical simulations such as numerical errors, spatial resolution, as well as computing time. Using a number of test cases we demonstrate that correlating different quantities offers insight into computational overhead, the distribution of numerical error across various mesh resolutions as well as the evolution of numerical error and run-time per degree of freedom

    An adaptive discontinuous Galerkin method for the simulation of hurricane storm surge

    Get PDF
    Numerical simulations based on solving the 2D shallow water equations using a discontinuous Galerkin (DG) discretisation have evolved to be a viable tool for many geophysical applications. In the context of flood modelling, however, they have not yet been methodologically studied to a large extent. Systematic model testing is non-trivial as no comprehensive collection of numerical test cases exists to ensure the correctness of the implementation. Hence, the first part of this manuscript aims at collecting test cases from the literature that are generally useful for storm surge modellers and can be used to benchmark codes. On geographic scale, hurricane storm surge can be interpreted as a localised phenomenon making it ideally suited for adaptive mesh refinement (AMR). Past studies employing dynamic AMR have exclusively focused on nested meshes. For that reason, we have developed a DG storm surge model on a triangular and dynamically adaptive mesh. In order to increase computational efficiency, the refinement is driven by physics-based refinement indicators capturing major model sensitivities. Using idealised numerical test cases, we demonstrate the model’s ability to correctly represent all source terms and reproduce known variability of coastal flooding with respect to hurricane characteristics such as size and approach speed. Finally, the adaptive mesh significantly reduces computing time with no effect on storm waves measured at discrete wave gauges just off the coast which shows the model’s potential for use as a robust simulation tool for real-time predictions

    Numerical Testcases to Study Proudman Resonance Using Shallow Water Models

    Get PDF
    Proudman resonance is the dominant mechanism behind meteotsunamis. We develop a comprehensive set of testcases to validate numerical methods focusing on the performance with respect to represent mentioned resonance. With the test cases we assess the wave amplification in dependence of characteristics of the pressure perturbation, model parameters, model resolution, and bathymetry characteristics. We use the compilation of tests to validate an adaptive discontinuous Galerkin (DG) model for the two-dimensional non-linear shallow water equations. As the tests are highly sensitive to model resolution, we use the adaptive mesh capabilities of the model to locally refine the disturbance and thus gain considerable efficiency

    An Experimental and Numerical Study of Long Wave Run-Up on a Plane Beach

    Get PDF
    This research is to facilitate the current understanding of long wave dynamics at coasts and during on-land propagation, experimental and numerical approaches are compared against existing analytical expressions for the long wave run-up. Leading depression sinusoidal waves are chosen to model these dynamics. The experimental study was conducted using a new pump-driven wave generator and the numerical experiments were carried out with a one-dimensional discontinuous Galerkin non-linear shallow water model. The numerical model is able to accurately reproduce the run-up elevation and velocities predicted by the theoretical expressions. Depending on the surf similarity of the generated waves and due to imperfections of the experimental wave generation, riding waves are observed in the experimental results. These artifacts can also be confirmed in the numerical study when the data from the physical experiments is assimilated. Qualitatively, scale effects associated with the experimental setting are discussed. Finally, shoreline velocities, run-up and run-down are determined and shown to largely agree with analytical predictions
    corecore