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Abstract: This research is to facilitate the current understanding of long wave dynamics at coasts and
during on-land propagation; experimental and numerical approaches are compared against existing
analytical expressions for the long wave run-up. Leading depression sinusoidal waves are chosen
to model these dynamics. The experimental study was conducted using a new pump-driven wave
generator and the numerical experiments were carried out with a one-dimensional discontinuous
Galerkin non-linear shallow water model. The numerical model is able to accurately reproduce the
run-up elevation and velocities predicted by the theoretical expressions. Depending on the surf
similarity of the generated waves and due to imperfections of the experimental wave generation,
riding waves are observed in the experimental results. These artifacts can also be confirmed in the
numerical study when the data from the physical experiments is assimilated. Qualitatively, scale
effects associated with the experimental setting are discussed. Finally, shoreline velocities, run-up
and run-down are determined and shown to largely agree with analytical predictions.

Keywords: long wave; tsunami run-up; pump-driven wave generator; discontinuous Galerkin
model; shallow water equations

1. Introduction

On 26 December 2004 at 01:01:09 UTC a submarine earthquake of magnitude M = 9.0 hit
the west coast of Northern Sumatra, Indonesia [1]. The main shock had its epicenter at 3.09◦ N
and 94.26◦ E, and the fault line extended for 1200 km to 1300 km from Indonesia northward to the
Andaman Islands. The generated tsunami waves caused disastrous destruction around the Indian
Ocean, with approx. 220,000 casualties, and severe material losses [2]. Run-up heights around the
Indian Ocean reached maximal values of about 30 m [3], where the maximum run-up of waves is
commonly defined as the shoreline elevation at maximum inundation above mean sea level (the
subsequent or preceding retreat of water is called run-down).

In the light of this and other disastrous flooding events, major efforts have been established to
improve the understanding of generation, propagation and run-up of what can be approximated as

J. Mar. Sci. Eng. 2016, 4, 1; doi:10.3390/jmse4010001 www.mdpi.com/journal/jmse



J. Mar. Sci. Eng. 2016, 4, 1 2 of 23

shallow water waves [4]. These efforts can be roughly classified into three methodological categories:
(a) experimental [5–7]; (b) numerical/computational [8–12]; and (c) theoretical [13,14].

In physical modeling the ability to generate a wave of a certain type determines quality and
reliability of the experimental data. Even in the age of super computers, experiments are still valuable
in research, as the data they produce does not result from any model simplifications and is vital
for validation and calibration of numerical models. For over 40 years, the solitary wave paradigm
has been assumed to yield a good model to study tsunami waves (see, e.g., [4,15–17]). However,
the findings in [18] demonstrated the shortcomings of this model to represent tsunami waves since
temporal and spatial scales of solitary waves are significantly shorter than those of the prototype.
Instead, the current state-of-the-art model (see [14]) is the N-wave in its general form, e.g., elevation
and depression are of different size.

Analogous to the improvement of the knowledge about wave types, the techniques to generate
waves have evolved over the past decades. Very early experiments were carried out in 1844 by
Scott Russell who used a sinking box to generate a solitary wave (see an investigation in [19]).
In the 1980s, Synolakis conducted experiments in a rectangular wave flume using a piston type
wave generator [20,21]. Using this technique, a vertical rectangular wall (a piston) is hydraulically
driven forward and backward to transfer momentum into the water column which imitates the
depth-averaged particle velocity of a passing wave and finally to generate the wave. In this way
one or more solitary waves are generated. By experimental means, and by employing linear and
non-linear shallow water wave theory, Synolakis [21] was able to predict the run-up of non-breaking
solitary waves. A similar comparison between analytical, numerical and experimental data was
conducted by Titov and Synolakis [22] to show that the non-linear shallow water wave equations
successfully reproduce experimental results or geophysical tsunamis with complicated small scale
bathymetric features.

Another hydraulic approach is the wave generation with a vertically moveable bottom as used
by Hammack [23]. In that way it was intended to model a submarine earthquake. According
to [24] this technique is not suitable for modeling waves in the vicinity of a coast since a distinction
between a generation section and a downstream section has to be made. A third approach to transfer
momentum into a water body is to release an amount of water from above the water surface [25].
Although a wave is generated, this dam break like mechanism has the disadvantage that significant
turbulence is induced into the water. Furthermore, it is difficult to control the wave characteristics
such as amplitude and period [24]. Recently, a new technique to generate long waves has been
developed at the Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering in Hannover,
Germany. Utilizing a pump-driven wave generator, precise control over the wave characteristics
(wave length, amplitude and shape) can be maintained to high accuracy [26]. In particular,
different kinds of waves can be generated including single cycle sinusoidal waves, solitary waves
and N-waves.

Flood research and forecasting are mainly carried out with the help of computer models that
employ robust and accurate numerical techniques to solve equations suitable to describe geophysical
fluid flow. Various state-of-the-art discretization techniques can be and are used for this purpose, such
as finite difference, finite element and finite volume models (see, e.g., [8,9,12,22,27]). Among these
models, discontinuous Galerkin models (as described in, e.g., [28,29]) have recently become popular,
because they combine numerical conservation properties with geometric flexibility, high-order
accuracy and robustness on structured and unstructured grids. Furthermore, the communication
between elements is local making them especially suitable for parallel and high performance
computing (see Kelly and Giraldo [30] for a study with a 3D model). Therefore, numerical modeling
became a most valuable tool in tsunami science; particularly powerful once employed in combination
with analytical and experimental methods.

While a number of analytical solutions are available [31], the present study focuses on
the important theoretical results in [14], who applied the methodology originally developed by
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Synolakis [21] for different wave shapes. Model calibration and validation calls for further realistic
experimental data, in order to link numerical modeling with realistic fore- and hindcasting results.

In order to increase confidence in our physical and numerical models, and to test the applicability
of the theoretical derivations, the authors investigate the agreement of experimental and numerical
modeling results. The present study therefore provides measurements of shoreline motion using
an innovative pump-driven wave generator (see [24]), and may serve as a novel benchmark for
leading depression sinusoidal waves. The produced data set is used to validate a numerical
discontinuous Galerkin non-linear shallow water model concerning shoreline dynamics. With both,
experiment and simulation, the authors reproduce the theoretical results for long periodic waves that
were presented in [14].

Our main research questions ask, whether run-up, calculated with the shallow water model, is
capable of representing shoreline motion adequately in terms of theoretical understanding according
to [14,21], and in terms of physical experiments as well as numerical methods, for a single cycle
sinusoidal wave as a very basic representation of a tsunami. Once convinced that the numerical
method adequately reproduces the theoretical expression, the authors investigate deviations of the
experimental results from theory by running numerical simulations with perfect and imperfect
initial conditions (as taken from “imperfect” experiments), assuming that impurities in the initial
wave setup lead to contaminated run-up results. The overall aim is to showcase how comparative,
intermethodological work contributes to the understanding of shoreline motion of long waves.

After summarizing the theoretical results of Madsen and Schäffer [14] at the beginning of
Section 2, the experimental and numerical setup of this study is introduced and the novel design of
the wave flume is described. Furthermore, the authors provide background of the one-dimensional
discontinuous Galerkin non-linear shallow water model. Once convinced that the experimental data
are useful and sufficiently accurate (Section 3.1), the authors perform numerical simulations with
analytically prescribed wave shapes to validate the numerical model in Section 3.2 in terms of the
theoretical expressions. The experimental data is then compared with analytical as well as numerical
results in Section 3.3. For further validation and in order to assess useful information on wave impact,
maximum as well as minimum run-up and shoreline velocities are addressed in Section 3.4. Finally,
an evaluation of all results, conclusions and an outlook is given in Section 4.

2. Methodology

The current study is based on the theoretical findings of Madsen and Schäffer [14], who
derived explicit formulae for long wave run-up on a plane beach generated by waves of different
shapes. The goal of this study was to reproduce these functional relationships for sinusoidal waves
(a) experimentally using a wave flume facility at the Leibniz Universität Hannover; and (b) by
numerical simulations with a one-dimensional shallow water model. After summarizing the results
of Madsen and Schäffer [14] for periodic sinusoidal waves, the experimental setup and the numerical
model used for this study are introduced in this section. At the end the boundary conditions (BC) are
detailed, which the authors used to generate the waves in the experimental and the numerical model.

Figure 1. Schematic cross section of the considered setup: A constant depth region is attached to
a linearly sloping beach with angle γ = tan α, where γ is the beach slope. Also indicated are the wave
gauges (WG) from the experimental setup.
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2.1. Theoretical Background

The explicit formulae for the run-up/run-down of incoming waves with fixed shape from
Madsen and Schäffer [14] are given for a one-dimensional bathymetry which consists of a constant
depth offshore region of depth h0 attached to a linearly sloping beach with γ being the constant beach
slope (cf. Figure 1). In the offshore region the waves are assumed to be solutions of the linearized
shallow water equations while they obey the non-linear shallow water equations on the sloping
beach. Effects of wave breaking and bottom dissipation are neglected in this theory.

Analytical solutions for the non-linear shallow water equation on a plane beach are already
derived by Carrier and Greenspan [13] by using a so-called hodograph transformation in which
a new set of independent variables (ρ, λ) and a velocity potential ψ(ρ, λ) are introduced. This leads to
a linear differential equation in ψ, for which one can derive exact solutions. In [14] the independent
variables are chosen in such a way, that ρ becomes 0 at the shoreline and λ is a modulated time.
By letting ρ → 0, the expressions for surface elevation η and velocity v in terms of ρ, λ and ψ lead
to explicit formulae for the evolution of run-up elevation R and the associated run-up velocity V.
Furthermore, the theory of Carrier and Greenspan [13] yields a theoretical breaking criterion, in
which case the time derivative of V and the space derivative of η go to infinity. This corresponds
to a discontinuity in these profiles.

Using some further approximations, Madsen and Schäffer [14] finally arrive at the run-up
expression for periodic sinusoidal waves. Let the coordinate system have its origin at the still water
shoreline with the x-axis being positive in the offshore direction (see Figure 1). The z-axis points
upwards. The time series of the incoming wave at the beach toe x0 = h0/γ is prescribed by

ηi(x0, t) = A0 cos(Ω [t− t1]) (1)

where ηi is its surface elevation, Ω is the angular frequency, A0 is the offshore wave amplitude, and
t1 is aphase shift. The run-up velocity and elevation are then

Ṽ(λ) =
ΩR0

γ
sin(θ + π/4) and R̃(λ) = R0 cos(θ + π/4)− Ṽ(λ)2

2g
(2)

with
R0 = 2A0

√
πΩt0 and θ = Ω(λ− t1 − 2t0) (3)

and g being the gravitational constant. Further, t0 = x0/
√

gh0, and the time is parameterized
through λ, i.e.,

t(λ) = λ +
Ṽλ2

2g
(4)

This describes the temporal variation of R(t) = R̃(λ(t)) and V(t) = Ṽ(λ(t)). One can also
derive the maximum run-up, which occurs for θ = −π/4. At this time R → R0 and V → 0.
Similar considerations can be made for the run-down and the extreme values of the velocity.

The maximum values of run-up/run-down elevation and velocity and the theoretical breaking
criterion for periodic sinusoidal waves are conveniently given by introducing the non-linearity
of a wave ε = A0/h0 and the surf similarity parameter. The latter was originally introduced by
Battjes [32] and is defined by ξ = γ/

√
H/L∞, where H = 2A0 is the incident wave height and

L∞ = gT2/(2π) the deep water wavelength of small amplitude sinusoidal waves with period
T = 2π/Ω. Thus,

ξ =
√

π

(
A0

h

)−1/2 (Ω2h
gγ2

)−1/2

(5)
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relates the beach slope to the wave steepness. With these definitions one obtains for a given
non-linearity the extreme values

Rup/down(ξ; ε)

A0
= ± 2π3/4

ε1/4ξ1/2 and
Vup/down(ξ; ε)√

gA0
= ± 2π5/4

ε1/4ξ3/2 (6)

only depending on the surf similarity parameter. The theoretical breaking criterion is met for

Rlimit
up/down(ξ)

A0
= ± 1

π
ξ2 or

Vlimit
up/down(ξ)√

gA0
= ± 1√

π
ξ (7)

In this study it will be shown how these results were reproduced in the laboratory experiment,
i.e., in a wave flume. Furthermore, they will be used later on to validate the numerical model
regarding its treatment of inundation.

2.2. Physical Model

The dynamics of long sinusoidal waves approaching the sloping beach and their subsequent
interaction during the run-up and run-down process was studied experimentally in a wave flume
at the University of Hannover. The closed-circuit wave flume that was used to generate the
sinusoidal waves including the experimental setup is already described in [24,26,33–35]. In summary,
the wave generation relies on electronically controlled high-capacity pipe pumps which allow for
the acceleration and deceleration of a water volume. A control loop feedback system allows the
generation of arbitrary wave shapes such as sinusoidal, solitary or N-waves over a large range of
wave periods and lengths.

A major advantage of this wave generation method with active control loop is that wave lengths
much longer than the available propagation distance of the wave flume can be generated. This feature
is accomplished by intrinsic treatment of the seaward propagating re-reflections. These re-reflections
would normally limit the effective wave length to be generated to one wave flume length or less.
Through inverse pump response, it is possible to compensate for the re-reflected wave components
and in principle, a “clean” wave generation is provided over the entire duration of the target surface
elevation time series, similar to the active wave absorption technique used in laboratory wind
wave generation.

However, a disadvantage of the wave generation is the development of spurious high frequency
ripples (or “riding waves”) overlaid with the long wave. These are caused by the active control
loop overshooting set reference values (or sometimes called target values) during the generation
process, and emanate from excess discharge into the wave flume at short times. In the sequence,
this unintentional generation of shorter waves alongside of the long waves gave rise to additional
effects occurring where the run-up and run-down took place. Most prominent, these riding waves
arrived somewhat delayed with respect to the long wave, broke on the shallow beach and interfered
with the targeted long wave run-up process. As will be shown later, some of the presented results
are attributed to this fact; a wave generation improvement useful in future studies was yet recently
reported by Goseberg et al. [36] or Bremm et al. [37] to circumvent such behavior.

Figure 2 shows a sketch of the facility used for the experiments. Pump station (a), propagation
section (b), reservoir section (c), sloping beach (d), and the water storage basin (e) are depicted,
respectively. Walls and horizontal bottom sections are made of plasterworks and floating screed
and the width of the flume is 1.0 m. A 1 in 40 sloping beach (i.e., beach angle of α = 1.43◦) made
of aluminum boards with small surface roughness was used to model the run-up. The effective
length of the constant depth propagation section from pump station to the beach toe was 19.92 m.
The undisturbed offshore water depth for this study was set to h0 = 0.3 m.
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Figure 2. Schematic drawing of the wave flume and its components with position indication of
instrumentation. Adapted from [38], with permission from c© 2012 World Scientific Publishing
Company Incorporated.

To control the generation of the waves, a pressure sensor was installed at the water inlet of
the pump station. In the deep water region offshore of the beach, wave gauges (Delft Hydraulics)
and velocity meters (Delft Hydraulics) completed the instrumentation during the experiments
as shown in Figure 2. The surface piercing wave gauges comprised two parallel electrodes.
The immersion depth (surface elevation) was determined by measuring the electric resistance
between both electrodes. The measurement accuracy was ±0.5%. Wave gauges (WG) were located
close to the pump (WG1, at x = 27.72 m), halfway of the flume bend (WG2, at x = 18.16 m) and at
the beach toe (WG3, at x = 12.0 m). All instruments were carefully tested and calibrated prior to the
experiments, and were subsequently set to zero before single experimental runs.

In addition, two high definition cameras (Basler, Pilot pi-1900-32-gc) captured the wave
interaction process with a sampling frequency of 32 Hz. Image processing techniques in the form
of color space conversion, lens distortion correction, image rectification and projection shore-parallel,
and image stitching were used in post processing on the two sets of images. The resulting processed
images from the two cameras (whose field of view is indicated in Figure 2) covered a length of 9.80 m
with an original overlap of 0.5 m. The time span of image recording was adapted based on the wave
period of the experimental run.

Stages of the image processing process are depicted in Figure 3 which includes scene snapshots
of each of the cameras and a final result after image processing routines. A manual processing was
used as the amount of experimental runs was reasonable to work through. Adhesive tape spaced
by 0.1 m was placed on the beach slope and from this, vectors of time and shoreline location along
the center line of the flume were determined based on the derived images as shown in Figure 3c.
This approach minimized the influence of fluid boundary layers formed on the flume walls. Based
on the outlined procedure, an accuracy for the manually processed shoreline location of ±5 mm
was estimated. For 50% of the experimental repetitions, PVC tracers with a diameter of 2 mm were
used to increase the traceability of the wave front. The tracers’ density is very close to the density
of water which results in small settling velocities and similarly small inertial forces were required to
accelerate the tracer particles close to the wave front. It was assured through preliminary tests that the
shoreline dynamics were not affected by the presence of the tracers. In particular, this method proved
useful for the run-up motion whereas inaccuracies might have occurred due to the fuzzyness of the
withdrawing shoreline during the run-down process, which has to be looked into in future studies.
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(a) (b)

(c)

Figure 3. Stages of the image processing with raw data images and final result after image processing
routines. (a) First camera scene; (b) Second camera scene; (c) Final stitched image for analysis.

Subsequently, the shoreline velocity was derived from the basic positional information along the
center line of the flume based on

Vi+1/2 = ± a
ti+1 − ti

(8)

Here, Vi+1/2 is conveniently assigned to time ti+1/2 = (ti+1 + ti)/2 and positively defined in the
offshore direction, a = 0.1 m denotes the distance between adjacent marker tapes, and ti and ti+1 are
the times where the shoreline crossed these tapes.

Due to irregular image acquisition measurement gaps occurred in the time series of
shoreline location and shoreline velocity. These gaps were not considered in the analysis of the
experimental data.

2.3. Scale Effects

The chosen length scale of the Froude-scaled physical model may cause scale effects at times
when or at locations where the Reynolds and Weber numbers fall short of commonly accepted
thresholds. For example, low Reynolds (Re) numbers in the physical model result in laminar
boundary layers which in turn reduce the effective roughness of the down-scaled model as shown
in the context of landslide generated waves [39]. In the following, the possible influence of such scale
effects in the present experimental setup is briefly discussed. A more general treatise on scale effects
can be found in Heller [40].

The Reynolds number during the wave propagation over horizontal bottom, conveniently
defined by wave celerity c =

√
gh, initial water depth h, and kinematic viscosity ν, yields

Re =

√
ghh
ν

=
1.72× 0.3

10−6 ≈ 5.1× 105 (9)

This value is non-critical with boundary layer turbulence fully developed and turbulence
effects similar between prototype and scaled model. However, in the sequence of the wave
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propagation characteristic velocities and water depth decrease significantly during the wave run-up
and run-down phase. Local water depth and run-up velocities are then characteristic quantities to
define the Reynolds number on the sloping beach. These values eventually approach zero, and so
does the corresponding Reynolds number. Schüttrumpf [41] defined a critical threshold of Recrit = 103

for overtopping experiments and this might be good guidance in the present case as well. As a direct
result, viscous forces are likely to play a more dominant role compared with prototype conditions in
the very shallow, phasing-out wave tongue region; Reynolds numbers fall short of the threshold
for example for water depth smaller than 1 cm in combination with flow velocities smaller than
0.1 m·s−1. This finding aligns well with the analogue requirement for scaled coastal models proposed
by Le Méhauté [42] who considered a minimal flow depth smaller than 2 cm and wave periods smaller
than 0.35 s as critical. As a matter of fact, the scale effects related to very long wave run-up on gently
sloped beaches have not been sufficiently addressed in the literature; experiments with varying model
families at different length scales have not been compared until now. An occasional example of scale
effect discussion in the context of impulsive wave run-up is a study by Fuchs and Hager [43].

In addition to viscous forces, surface tension has theoretically the potential to bias the
experimental results. While in the prototype scale waves are rarely transformed under the forces
carried to the water surface by surface tension, the effect might gain significant influence in small
scale models. Short waves, which regularly have to be investigated in laboratory studies, can
reach the region of capillary waves when the model length scale of a hydraulic scale model is
designed too small. Dingemann [44] expressed the effectiveness of the surface tension in an increase
of gravitational acceleration, but outlined that the influence of surface tension to wave action is
dominant when, for example, capillary waves are investigated. The effect of surface tension is
interpreted to be small for large Weber (We) numbers, indicating that driving forces dominate. The
Weber number is defined as

We =
ρv2l

σ
(10)

where ρ is the fluid density, v and l are the characteristic velocity and length scales, and
σ = 0.073 N·m−1 is the surface tension for 20 ◦C water. Using the equation above, the Weber
number in the experiments reported herein was approximately 1.2× 104 in the horizontal propagation
section (applying the wave celerity c as characteristic velocity and the fluid depth h as length
scale). This value, which is well above critical thresholds, also reflects the fact that the length of
the long waves and capillary waves differ by orders of magnitude. In the wave tongue region earlier
discussed in regard to the viscous effects, where fluid depth and velocity decrease to l = 1 cm and
v = 0.1 m·s−1, Weber numbers were however significantly reduced and yielded values as small as
1.4. A comprehensive review of small scale models and the influence of the Weber number has been
presented in Peakall and Warburton [45]. They summarized various recommendations on the critical
flow depth in small scale models reporting critical Weber numbers in the range of We = 2.5− 160. It is
thus likely, that surface tension has a major influence on the wave tip formation during the run-up
process, as the Weber number found for the experiments fell below this given threshold. Surface
tension does not properly scale in physical models governed by Froude similitude. Therefore, the
wave run-up of long waves measured is likely be underestimated to a certain extent since tensile
forces along the wave front with small surface radii counteract the inertia forces from the run-up flow.

Summarized, in the constant depth region the flow should be realistically modeled in the wave
flume. In the run-up process, however, certainly some inaccuracies arise compared to realistic
tsunami conditions. However, these are probably negligible compared to inaccuracies in modeling
the topography and other parametrization.

2.4. Numerical Model

The numerical simulations presented in this study were executed using a one-dimensional
shallow water model. In this model the equations are solved in conservation form with fluid depth
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h and discharge (momentum) hu being the primary variables. They are discretized using the explicit
Runge-Kutta discontinuous Galerkin (RKDG) finite element method [46] with second-order accuracy.
This scheme was chosen as a state-of-the-art discretization for hyperbolic conservation laws with
source terms. The method is mass-conservative and preserves the steady state at rest (i.e., it is
well-balanced). A comprehensive presentation of the scheme including its validation with respect
to the shallow water equations is given in Vater et al. [47].

An important part in the numerical scheme is the treatment of wetting and drying events.
Here, the authors pursued a fixed grid approach where initially dry cells can be flooded and wet
cells can dry out during the simulation. A cell can be either wet or dry, thus the wet/dry interface
is only accurate up to one cell size. The wetting and drying treatment involves only one additional
parameter, which is a wet/dry tolerance. Whenever the fluid depth h is below this tolerance, the
velocity is set to zero. In [47] it was shown that the specific value of this parameter does not affect
the stability of the scheme. It rather influences the accuracy of the wetting and drying computation.
In the presented results, this tolerance was always set to 10−8 m.

The fixed grid approach implies that one does not get a continuous representation of the
shoreline evolution. Instead, the scheme results in a discrete time series in which the shoreline jumps
from one cell interface to the next, whenever one cell gets fully flooded and water penetrates into the
next cell, or draining leads to the opposite process. Therefore, similarly to the data processing in the
experiments these jumps were identified in the time series as points where the shoreline crossed a cell
interface, and the space between the points was linearly interpolated. As the discrete solution led
to some oscillations in the shoreline computation where the latter jumped back and forth in some
situations only within a few time steps, all oscillations within a window of five time steps were
removed in this time series. The shoreline velocity was then computed by a formula equivalent
to Equation (8). In this time series, also some oscillations were filtered out, which occurred within
a window of two time steps.

For the discretization in time, Heun’s method was used, which is the second-order representative
of a standard explicit Runge-Kutta total-variation diminishing (TVD) scheme [48,49]. Its stability
is governed by a Courant–Friedrichs–Lewy (CFL) time step restriction [50] with ∆t ≤ cfl∆x/cmax,
where ∆t and ∆x are the time step and grid cell size, respectively, cfl is the CFL number and
cmax = max{|u|+

√
gh} is the maximum speed at which information propagates. To obtain linear

stability and positivity of the water depth in the RKDG method, the validity of cfl ≤ 1/3 has to be
ensured [47,51].

The gravitational constant was set to g = 9.81 m s−2 throughout the computations.
No parametrization of bottom friction was included in the model, since the theoretical results of
Madsen and Schäffer [14] also do not consider friction. However, some deviations compared to the
experimental runs might be attributed to this fact. To obtain results, which are comparable to the
experiments, the simulated domain was 33 m long and spanned from the dry area of the sloping
beach at x = −5.28 m to the first wave gauge (WG1) at x = 27.72 m. For the discretization the domain
was devided into 330 uniform cells with a cell size of ∆x = 0.1 m. The time step size was fixed to
∆t = 0.01 s, which results in a CFL number of cfl = 0.18. The (one-dimensional) bottom topography
was given by b(x) = max{0, h0 − x/40}. The initial conditions for the numerical simulations were
a fluid at rest, with

h(x, 0) = max{0, h0 − b(x)}, (hu)(x, 0) ≡ 0 (11)

2.5. Boundary Conditions

In this study, long wave conditions in the vicinity of the shore in shallow water were
approximated by sinusoidal waves with leading depression. The chosen boundary conditions
(BC) were used throughout this study for the experimental and the numerical method equally.
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Experimentally, those waves were generated by the pump-driven wave generator, as outlined in
Goseberg et al. [26] and in Section 2.2 on the basis of ideal, analytical surface elevation time series of

ηb(t) =


H
2

cos
(

2π
t− ts

T
+

π

2

)
for ts ≤ t ≤ te

0 otherwise
(12)

where H = 2A0 is the wave height, and T is the wave period. In the experiments only one period of
a sinusoidal wave was modeled, which started after 10 s. The initial delay was necessary, because the
pipe pumps needed some initialization time. This means that the starting time was set to ts = 10 s
and the stopping time to te = T + ts. It is to be noted that the experimentally generated waves exhibit
imperfections (cf. Section 3.1) which are attributed to the tuning of the control loop as outlined in
Section 2.2.

In the numerical simulations, the incident wave was modeled through the right boundary
condition. For validation against analytical expressions the fluid depth was prescribed by
Equation (12) with hb(t) = ηb(t) + h0. The velocity was then chosen such that the boundary data
resulted in a single (simple) wave propagating to the left. In particular, it was set to

vb(t) = 2
(√

gh0 −
√

gh
)

(13)

The starting time in Equation (12) was set to ts = 0 s, since no initialization phase is needed for
the numerical model. For the stopping time two different simulations were conducted for each wave
shape. In one simulation the stopping time was after one period as in the experimental setup, i.e.,
te = T. In the other simulation the stopping time was set to infinity, which means that the incoming
sinusoidal wave lasted until the end of the simulation. As will be shown in the results, the comparison
between the respective two simulations revealed several deviations between the theory of periodic
sinusoidal waves and the practical setup of a single period sinusoidal wave.

For comparison with the experiments the right boundary condition of fluid depth and velocity
were set using the data from the time series at wave gauge WG1 of the experimentally measured data.
The left boundary did not affect the numerical solution as it was in the dry part of the domain.

Table 1 summarizes the boundary conditions used in the current study. The wave characteristics
were chosen to cover the significant range of surf similarity parameters ξ. To investigate the run-up
of long waves on a plane beach six leading depression, non-breaking, single period sinusoidal waves
were selected. The wave period varied from 20 s to 100 s which correspond to laboratory wave
lengths from 34.31 m to 171.55 m. The wave height varied from 2 cm to 4 cm. For brevity, wave
identifiers (Wave-ID) were used throughout the paper to label the waves used; waves are labeled
with a naming scheme “Tx_Hy” where T denotes the wave period in seconds, H denotes the wave
height in centimeter and x and y contain the actual quantity values. The long waves covered a range
of surf similarity ξ between 4.42 ≤ ξ ≤ 15.62. In total 36 experimental runs were conducted, since
each wave was reproduced six times. This procedure allowed quantification of the repeatability of
the experiments. The data acquisition time for each experiment was 120 s.
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Table 1. Characteristics of sinusoidal waves used, surf similarity according to Equation (5), naming
scheme indicates period and wave height, respectively.

Wave-ID Height Period Length Non-linearity Rel. Amplitude Surf Similarity
(−) H(m) T(s) L(m) ε = A0

h (−) A0
L (−) ξ(−)

T20_H2 0.02 20.00 34.31 0.033 2.91 × 10−4 4.42
T30_H2 0.02 30.00 51.47 0.033 1.94 × 10−4 6.63
T44_H3 0.03 44.00 75.48 0.050 1.99 × 10−4 7.94
T58_H3 0.03 58.00 99.50 0.050 1.51 × 10−4 10.46
T77_H4 0.04 77.00 132.09 0.067 1.51 × 10−4 12.03

T100_H4 0.04 100.00 171.55 0.067 1.17 × 10−4 15.62

From now on the term “experimental BC” will be used to indicate that the numerical model
was initialized with surface elevation and velocity of a single cycle sinusoidal wave as measured at
WG1 in the experiments. Similarly, “analytical BC” indicates numerical runs using a perfect periodic
sinusoidal wave.

3. Results

In this section the numerical and experimental results are described and compared with the
analytical expressions of Madsen and Schäffer [14]. First, the quality of the experimentally generated
waves is discussed, and the numerical model is validated in terms of the explicit expressions
of run-up height and velocity as given in [14]. Having confidence in the numerical model, the
experimental and numerical results are compared and, where appropriate, matched against the
analytical expressions. Finally, the maximum determined run-up/run-down shoreline position as
well as velocity are investigated and compared with the analytical expressions from Section 2.1.

3.1. Quality of Experimentally Generated Waves

As the quality of the measured run-up heavily depends on the generated wave signal, the
experimentally generated waves are first discussed prior to the presentation of the shoreline evolution
in the subsequent sections. Therefore, the wave signal, which was measured by the pressure
sensor at the water inlet, and the time series of the surface elevation at the three wave gauges will
be investigated.

Figure 4. Time series of surface elevation for the reference curve (red dashed) and measured values
(solid lines) for all six runs of T20_H2 (top left); T30_H2 (top right); T58_H3 (bottom left) and
T100_H4 (bottom right) as measured by the pressure sensor at the water inlet.
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Figure 4 shows the measured time series of the experimental surface elevation at the water
inlet of the pump station for all six reproductions of the waves T20_H2, T30_H2, T58_H3 and
T100_H4 compared to the corresponding set point, i.e., reference values. In general, the sinusoidal
long waves are generated sufficiently well. Deviations from the reference curve can mostly be
attributed to the choice of tuning parameters for the wave generator (e.g., the smaller amplitude of
T20_H2, top left); better tuning is principally feasible, but could not be achieved with acceptable effort
at the time of the experimental data acquiring. The tuning parameters electronically steer the rate of
rotation of the pumps and determine the behavior of the wave generator, therefore they strongly
influence the quality of the generated waves. Especially in the second half of the wave period one can
observe some spurious, parasitic waves riding on top of the main, long wave, which become more
significant for wave shapes with longer wave length. As already discussed in Section 2.2, these riding
waves are a result of the applied wave generation strategy.

The authors used the Brier score which is also known as the mean squared error as defined
in [52] to further evaluate the quality of the generated experimental waves. Thereto, the Brier score
and standard deviation were determined for each experimental run of each wave. Table 2 shows
the minimum and maximum Brier score as well as the minimum and maximum standard deviation
of the actual curve from the reference curve for all six sinusoidal waves from Table 1. Therewith,
the values in Table 2 take into account the individual experimental runs. A Brier score of 0 would
be a perfectly reproduced curve. The table shows that the waves T30_H2 and T58_H3 exhibit the
best fits, although the latter already contains a significant amount of riding waves as can be seen in
Figure 4. The wave T20_H2 has bad Brier scores which is probably due to a too small amplitude
during the initial run-down, as opposed to the wave T100_H4 which has bad scores due to the high
amount of riding waves present in the signal.

Table 2. Variation of Brier score [52] and standard deviation (STD) of all generated waves.

Wave-ID Brier Score STD (cm)

T20_H2 0.65–0.71 0.15–0.19
T30_H2 0.30–0.38 0.10–0.11
T44_H3 0.30–0.40 0.18–0.20
T58_H3 0.22–0.28 0.15–0.17
T77_H4 0.35–0.45 0.24–0.29
T100_H4 0.29–0.48 0.24–0.34

Figure 5 shows the temporal evolution of the surface elevation observed in the experiments and
the numerical simulations at the three wave gauges for the same four wave shapes as in Figure 4.
In addition to the data from the numerical simulation using experimental BC, also the time series
using analytical BC is shown, but shifted by tshift = (4.2/

√
gh0 + 10)s to account for the additional

propagation section between the water inlet and WG1 in the experiments (which was not present in
the numerical simulations) and the 10 s delay in the experimental wave generation (cf. Section 2.5).
For all waves, the surface elevation obtained by the experiments and the numerical simulations
using experimental BC agree well. Only at larger distances from the wave generation (e.g., at WG2
and WG3) the experimental time series show larger amplitudes, which are probably due to a small
inconsistency in the velocity signal at WG1, where the numerical model obtains its boundary data
from the experiments. Furthermore, the riding waves on top of the waves with larger period (here
T58_H3 and T100_H4) evolve with the main wave towards the sloping beach.

In comparison to the surface elevation obtained from the numerical simulations using analytical
BC, it can be seen that the deviation for the initial single cycle sinusoidal wave is mostly the same as
in the signal at the wave inlet from Figure 4 at the different wave gauges. Furthermore, for the waves
T20_H2 and T30_H2 there is a small hump visible after the sinusoidal wave has passed, which is not
present in the “analytical” data. This hump is due to the shut down of the wave generation.
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Figure 5. Time series of surface elevation η at wave gauges WG1 (left), WG2 (middle) and WG3
(right) for four different wave shapes. From top to bottom: T20_H2, T30_H2, T58_H3, T100_H4.
Experimental data (blue), numerical results with experimental boundary data (black dash-dotted),
numerical results with analytical boundary data shifted by tshift = (4.2/

√
gh0 + 10)s to fit the

experimental data (red dashed).

3.2. Validation of the Numerical Model

To have sufficient confidence in the numerical model, it was validated using the analytical BC
as defined in Section 2.5. Similar to the experiments, the numerical model was always initialized
with a steady state at rest, and the sinusoidal wave was only imprinted by the boundary condition.
Note, that this is a deviation from the theory of periodic sinusoidal waves as presented by Madsen
and Schäffer [14], whose expressions are derived for permanently incoming waves without any
initialization. However, it was not possible to find the correct initial conditions for this setup.
Furthermore, the two simulations with a single cycle and a periodic sinusoidal wave as described in
Section 2.5 revealed the deviations to be expected between theory and the conducted experiments,
which will be shown in the following. This shows the value of concurrent experimental and
numerical studies, when it is not possible to design the experimental setup completely according
to the theory.

Figure 6 shows a comparison of analytical (red dashed) and numerical shoreline position and
shoreline velocity for the waves T20_H2, T44_H3 and T100_H4. For the numerical simulations the
results are shown for both, the periodic sinusoidal (blue solid) and the single cycle sinusoidal wave
(black dash-dotted). These waves were chosen as representatives for the validation, but the findings
are also valid for the other wave shapes. Comparing the simulations using a periodic sinusoidal
wave with the analytical expressions, one can see that the numerical model captures the theory well.
Only in the beginning, when the still water solution passes on to the periodic one, a fast transition
in the shoreline position with a high velocity peak is visible. Note that a positive shoreline velocity
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corresponds to an actual run-down. This is due to the choice of the coordinate system where the x-axis
points positively offshore. One can further notice that the amplitude in the numerical simulations
is often a bit too small, and there is a small phase shift, especially for the low frequency waves.
These deviations can probably be attributed to the fact that the numerical solution does not oscillate
everywhere from the beginning, but needs a spin-up.

Figure 6. Time series of run-up elevation R (top) and velocity V (bottom) using
analytical boundary data for three different wave shapes (left: T20_H2; middle: T44_H3;
right: T100_H4. Depicted are the theoretical evolution for periodic sinusoidal waves (red dashed),
the numerical simulation with a single cycle sinusoidal wave (black dash-dotted) and the simulation
with periodic sinusoidal waves (blue solid). Also shown are the positions of the theoretical
maximum/minimum run-up elevations (red circles) and velocities (red diamonds) in the first period.
The shaded regions depict the intervals where the extreme values for the diagrams in Figures 9 and 10
were computed.

The numerical results of the single cycle sinusoidal wave follow the one with the periodic
sinusoidal wave for about a period. After this time the oscillating solution passes back on to
the still water solution, which again comes along with a sharp transition in the shoreline position
and an associated velocity peak. This behavior has also implications for the comparison of
the experimental results with the analytical expressions of Madsen and Schäffer [14], especially
concerning the extreme values in run-up elevation and velocity. In Figure 6, the occurrence of these
extreme values in the first period is also indicated by red circles and diamonds, respectively. From
this, one can conclude that the maximum run-down cannot be reliably determined in the experiments,
since it is always biased by the transition between the still water and the oscillating state—during the
initial run-down and after the maximum run-up was reached. This is also true for the maximum
run-down velocity for long periods. Therefore, these values will be omitted when the extreme values
are compared to theory. On the other hand, the maximum run-up elevation and velocity should
be well captured by a single cycle sinusoidal wave, provided there are no other disturbances in the
experimental data.

3.3. Shoreline Motion

After having discussed the quality of the experimental wave signal and the reliability of the
numerical model concerning shoreline dynamics, the experimentally obtained shoreline motion data
is finally presented. Shoreline location and shoreline velocity of a leading depression sinusoidal wave
is compared to the numerical results using experimental BC and, where appropriate, to the analytical
expressions of Madsen and Schäffer [14].
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Figure 7. Time series of run-up elevation R from the experiments and the numerical simulation using
experimental boundary data for all six wave shapes (left to right: T20_H2, T30_H2, T44_H3 (top row);
T58_H3 (bottom left); T77_H4, T100_H4 (bottom row)). Depicted are the theoretical evolution for
periodic sinusoidal waves (red dashed), the numerical simulation (black dash-dotted) and the results
from the six experimental measurements (solid lines). The shaded regions depict the intervals where
the extreme values for the diagrams in Figure 9 were computed.

3.3.1. Run-up and Run-down of Long Waves

Figure 7 shows the numerical, experimental and analytical shoreline location for all waves used
in this study. The analytical expression (red dashed) represents the run-up of periodic sinusoidal
waves while the numerical model was initialized with the surface elevation profiles of a single cycle
sinusoidal wave as measured in the experiments. In case of the experimental data (solid lines) the
results of all six measurements are shown for each wave as far as data was available. The gaps in the
experimental data are consequences of a poor traceability of the shoreline. In particular, the run-down
is a transient process, so that there was hardly a distinct evidence to trace the shoreline. In contrast,
the shoreline could be traced well during run-up.

Good reproducibility is observed in the experiments. In general, the numerical, experimental
and, where the wave has adjusted to the sinusoidal expression, also the analytical shoreline locations
agree well for the waves T20_H2, T30_H2 and T44_H3 (top row). For the three longest waves T58_H3,
T77_H4 and T100_H4 (bottom row) significant deviations of the experimental shoreline location from
the analytical expressions are observed. These oscillations are caused by the over-riding waves,
which are already present in the wave signal. One can clearly see that the riding waves overtake
the main wave before the maximum run-up height is achieved and lead to false maxima in the
measurements. In these intervals there are also some deviations between the experimental and the
numerical measurements (e.g., around t = 80 s for the wave T77_H4). They could be due either
to the breakdown of the shallow water theory in the vicinity of the shoreline, or to some incorrect
measurements in the experimental data. Another deviation is present in the initial run-down, which
is often underestimated by the numerical model. This is best visible in the waves T20_H2 and T30_H2,
while in the other waves the maximum run-down could often not be determined since its location
was located outside the field of observation covered by the cameras. This deviation is attributed to
the smaller amplitude in the wave signal, already present in the time series at the wave gauges.

Disregarding the corrupting influence of the riding waves, the analytical shoreline location
for periodic waves can be reproduced by laboratory single cycle sinusoidal waves with sufficient
accuracy; accuracy will further increase in cases where a sufficient amount of time is spent to tune
the wave generator to avoid spurious short waves during the wave generation or by following the
improvements outlined in Bremm et al. [37].
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Figure 8. Same as Figure 7, but for run-up velocity V. The shaded regions depict the intervals where
the extreme values for the diagrams in Figure 10 were computed.

3.3.2. Shoreline Velocity during Run-up and Run-down

Figure 8 shows the numerical, experimental and analytical shoreline velocity, again for all waves
used in this study. As described in Section 2 the experimental shoreline velocity, and similarly
the shoreline velocity for the numerical simulations, was derived from the shoreline location using
Equation (8). Since the x-axis of the wave flume coordinate system points positively offshore, positive
velocity values in Figure 8 indicate the wave run-down.

Similar to the shoreline motion the experimentally determined velocities agree well with
the ones from the numerical simulation. In particular, this is true for the initial run-down
and the first run-up phase (first maximum and minimum, respectively). As in the numerical
runs with analytical BC the first run-down is not in accordance with the analytical shoreline
velocity, but the run-up process essentially agrees well. An exception is the wave T20_H2 (top
left in Figure 8), where the evolution of the analytical shoreline velocity exhibits a remarkable
steep gradient that can neither be reproduced by the numerical model, driven by experimental
initial conditions, nor by the physical experiments. The authors attribute this observation to
the imperfect wave signal, which exhibits a too small amplitude in surface elevation during
the initial depression and results in a shallower slope in the first edge of the sinusoidal cycle
(cf. Figure 4). Note that this deviation is not present when computing the wave with (perfect)
analytical BC as shown in Figure 6. Due to the the lack of experimental data in the second run-down,
a comparison for the velocity during this phase is only possible for the wave T44_H3, which agrees
well with the analytical velocities. This is also true for the numerically determined values in these
regions for the waves T20_H2, T30_H2 and T44_H3.

Similar to the shoreline location the riding waves also corrupt the experimental shoreline
velocity. This becomes evident in high peaks in the time series, as seen around t = 55 s for the wave
T44_H3 or around t = 70 s for the wave T58_H3. This effect is also evident for the two longest waves
T77_H4 (bottom middle) and T100_H4 (bottom right). However, the numerical model simulates
the riding waves well, since an overall good agreement between the numerical and experimental
shoreline velocities is observed.
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Table 3. Time intervals (in seconds) which were used for the computation of the extreme values in
Figures 9 and 10.

Wave-ID
Analyt. BC, Periodic Wave Experiments/exp. BC, Single Cycle Wave

All Extreme Values Rup Rdown Vup Vdown
(s) (s) (s) (s) (s)

T20_H2 30–80 40–52 – 40–52 –
T30_H2 30–80 40–57 – 40–57 –
T44_H3 35–120 43–70 – 43–54 60–80
T58_H3 40–150 45–80 – 45–67 –
T77_H4 40–200 50–100 – 50–74 –
T100_H4 50–250 60–110 – – –

3.4. Extremal Shoreline Dynamics

In this section the maximum run-up and run-down as well as the maximum shoreline velocity
during run-up and run-down are addressed. If not stated otherwise, these extremal characteristics
are investigated for the experimentally generated and the numerically simulated waves, with
experimental as well as analytical boundary conditions, and compared with the theoretical results
of Madsen and Schäffer [14]. Note, that the normalized maximum run-up shown in the following
is defined as the maximum run-up normalized by the respective offshore amplitude of the long
waves. Where experimental data was used, the values for maximum run-up and run-down and
the corresponding maximum shoreline velocities were obtained through an average of all six runs
of the waves. Note, that the extreme values were not taken from the entire time period, but rather
from carefully chosen intervals. The respective intervals are given in Table 3 and marked gray in
Figure 6–8. The reason for this procedure was to detect the intervals in which the actual run-up took
place and to disregard time spans where experiments and simulations deviated from the theory by
design, or the data was corrupted by riding waves.

Figure 9. Maximum run-up (left) and maximum run-down (right) of long sinusoidal waves.
Analytical (black stars), experimental (red circles) and numerical (diamonds)—with experimental
(cyan) and analytical (red) boundary condition. Solid black line according to Equation (7). Colored
solid lines are computed according to Equation (6).

Figure 10. Maximum shoreline velocities during run-up (left) and run-down (right). Analytical (black
stars), experimental (red circles) and numerical (diamonds)—with experimental (cyan) and analytical
(red) boundary condition. Solid black line according to Equation (7). Colored solid lines are computed
according to Equation (6).
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3.4.1. Shoreline Location

Figure 9 (left) shows the experimental, numerical and analytical normalized maximum run-up
for all long waves used in this study as a function of the surf similarity parameter ξ. The parameter
ε defines the non-linearity of the wave, which is the ratio between the wave amplitude and the
undisturbed water depth as defined in Section 2.1. As already stated in [53] the highest run-up occurs
for surf similarity parameters 3 . ξ . 6. This is the interval where the theoretical transition from
breaking to non-breaking waves occurs. For increasing ξ the analytical expression from Madsen and
Schäffer [14] predicts a decrease in the normalized run-up.

Using the analytical boundary conditions (red diamonds), the monotone dependence on ξ can
be reproduced with the numerical model. However, the model under-predicts the maximum run-up
for larger ξ (i.e., longer wave lengths), which was already noted in Section 3.2 and is attributed to
an inconsistency of the velocity signal at WG1. Note that for ξ = 6.63 (wave T30_H2) only one
marker is visible for the numerical run-up. This is because the run-up is identical for both simulations
(experimental and analytical BC).

The experimental normalized maximum run-up (circles) agrees well with the analytical
expression (stars) for ξ = 6.63 and ξ = 7.94 (waves T30_H2 and T44_H3). However for ξ = 4.42
(wave T20_H2), it is lower than the analytical value, which the authors attribute to friction. For ξ > 10
the experimentally determined maximum run-up is significantly higher than the analytical run-up
due to the riding waves that corrupt the shoreline evolution. Initializing the numerical model with
the imperfect surface elevation profiles, i.e., experimental BC, results in even higher run-up heights,
which the authors also attribute to the neglected friction in the numerical model. However, the model
is generally in good accordance with the experiments.

Figure 9 (right) shows a comparison between the analytical (stars) and numerical (analytical BC,
red diamonds) normalized maximum run-down. Maximum run-down values for the experimental
and numerical results using experimental BC were not computed, since they both result from a single
cycle sinusoidal wave. As stated in Section 3.2, the maximum run-down is always biased by
the transition between the still water and the oscillating state in this case and would have been
misleading. Similar to the run-up case the maximum run-down is well reproduced by the numerical
model using analytical BC, but it results in too small absolute values for large ξ.

3.4.2. Shoreline Velocity

Figure 10 (left) shows a comparison between analytical, experimental and numerical normalized
maximum shoreline velocities during wave run-up. As stated in [53] and confirmed in this study,
the highest maximum shoreline velocities occur for waves in the transition region with 3 . ξ . 6,
where the wave T20_H2 exhibiting the lowest surf similarity parameter of 4.42 has the highest
shoreline velocity. Using analytical BC, the numerical maximum shoreline velocity agrees well
with the analytical values. The maximum shoreline velocity could also be reproduced with the
physical and numerical experiments, when the time intervals where riding waves corrupted the
signal were excluded in the maximum computation. Deviations only occur for the wave T20_H2
(ξ = 4.42). This can be probably explained by the imperfect wave signal (cf. Section 3.1). The wave
T100_H4 (ξ = 15.62) was completely corrupted by riding waves when it hit the beach, which made it
impossible to determine an interval for a proper calculation of the maximum run-up velocity.

In analogy to the maximum shoreline velocity during run-up now the maximum shoreline
velocity during run-down is addressed. The run-down velocity during the first run-down was not
considered, since it was biased by the transition to the sinusoidal behavior of the wave. Furthermore,
due to the lack of data from the experiments during the second run-down, no maximum values
were computed from the experimental time series. One exception is the wave T44_H3, where data
from several runs was available. Figure 10 (right) shows the comparison of maximum velocities
during run-down.
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Regarding the analytical expressions, the correlations between surf similarity ξ, magnitude of
the shoreline velocity and wave non-linearity ε are the same as for the maximum run-up velocities.
Initializing the numerical model with analytical BC yields again an overall good agreement of the
numerical normalized maximum run-down velocities with the analytical expressions of Madsen and
Schäffer [14]. Running the numerical model with experimental BC results in good agreement with
the experimental data. However, since experimental data is available for one wave only, the results
have to be interpreted with care.

4. Discussion and Conclusions

This study contributed to the answer of the basic research question, whether shallow
water theory can explain and accurately model the run-up behavior of long waves on a plane
beach. By conducting physical and numerical experiments and comparing them with analytical
expressions derived from the underlying equations, the authors demonstrated the usefulness of such
simultaneous experimentation.

A novel wave generator, based on hydraulic pumps that are capable of generating arbitrarily
long waves (even exceeding the wave flume length) was used to generate wave periods of 20 to
100 s Combined with appropriate wave heights, surf similarity parameters between 4.4 . ξ . 15.6
were realized. Sinusoidal wave shapes were adopted from [14], in order to obtain waves with
corresponding analytical reference solutions. Due to the complex control problem for this type of
wave generator in the current set-up, spurious over-riding small-scale waves were unavoidable.
Scaling effects were also discussed and it could be concluded that the experimental scale imposes
at most minor inaccuracies in the run-up area on the experimental results.

A Runge-Kutta discontinuous Galerkin method with a high fidelity wetting and drying
scheme was applied to numerically solve the one-dimensional non-linear shallow water equations.
Analytical (from [14]) and experimentally generated wave shapes were used as inflow boundary
conditions for the numerical experiments.

In order to compare analytical, numerical and experimental data, the wave similarity measured
by the Brier score, maximum run-up and run-down height, as well as run-up/run-down velocities
were utilized as quantitative metrics. In a first analysis, periodic and non-periodic clean sinusoidal
waves were compared to rule out differences due to the single sinusoidal wave generation in the
wave flume. On further analysis, significant differences in experimental and analytically expected
values are observed. However, with the combination of analytical, numerical, and experimental data
it could be demonstrated that spurious over-riding small-scale waves lead to the observed deviations
between analytical expression and experimental values. The numerical model serves as a linking
element between theoretical and measured results, and can therefore explain rigorously the influence
of small-scale spurious pollution.

Future investigations could be directed to solve the following problems: Better feedback
control systems could minimize the spurious over-riding waves and allow for a better resemblance
of experimental and analytical wave shapes. More appropriate wave shapes, like N-waves or
wave shapes, reconstructed from tide gauges, could be generated in order to obtain a better
representation of tsunami wave characteristics. Finally, a true two-dimensional simulation could
investigate geometrical features of the experiment, taking into consideration small-scale reflections
and inhomogeneous meridional velocity and wave height distributions.
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Appendix

A supplementary file containing the experimental data presented in this study is available from
the article’s website or can be requested from the authors. It is a zip archive and provides the
data files named “TxxxHyExpz.txt” and “TxxxHyRunupExpz.txt”. Both data sets are labeled with
a naming scheme where T denotes the wave period in seconds, H denotes the wave height in
centimeter, Exp means Experiment and xxx, y and z contain the actual quantity values. The files
labeled “TxxxHyExpz.txt” contain seven columns of time series that are named and explained in
the following:

• Time: experiment time in [s], range: 0 s to 120 s,
• Reference value: analytical surface elevation at the water inlet (x = 31.92 m) in [cm], ideal single

cycle sinusoidal wave,
• Actual value: measured surface elevation at the water inlet (x = 31.92 m) in [cm] as generated

by the wave generator,
• WG1, WG2, WG3: surface elevation in [cm] as measured at the three wave gauges,
• Velocity: measured wave velocity at WG1 in [cm/s] in propagation direction.

The sampling frequency for all measurements was 100 Hz. All data recorded with calibrated
instruments was converted to SI units except for the velocity which is given in [cm/s]. The time
series of wave gauge 1 (WG1) and the velocity appear to be noisier than other instrument data
which might be due to electric field disturbances between neighboring instruments. Application
of a suitable filter, (e.g., a moving average with 100 value window size as used in this study) might
therefore be recommended before using the raw data presented here. The “Reference value” of the
first experiment of wave T58_H3 (file T058H3Exp1.txt) exhibits a discontinuity at Time t = 43 s, which
might be due to a temporary instrument failure.

The data in the files labeled “TxxxHyRunupExpz.txt” contains the experimental run-up data,
i.e., position and velocity of the shoreline as the wave climbs up the beach. Each text file contains
three columns:

• t: time of measurement for shoreline position in [s]; duration depending on wave period,
• pos: horizontal position of shoreline at time t in [m] (not run-up height!),
• v: computed shoreline velocity in [cm/s].

The time in TxxxHyRunupExpz.txt is consistent with the one in TxxxHyExpz.txt; it is the overall
time of the experiment. The position (“pos”) in TxxxHyRunupExpz.txt is the horizontal distance of
the shoreline to the zero water line. To calculate the run-up height (height above sea level), one has
to use the relation: R = pos · γ, where R is the run-up height, pos is the horizontal shoreline position
(i.e., “pos” in TxxxHyRunupExpz.txt) and γ is the constant beach slope (here 1/40). The velocity
in TxxxHyRunupExpz.txt is calculated from two subsequent points of time and the corresponding
shoreline positions. The NaN’s in TxxxHyRunupExpz.txt indicate measurement periods where no
data was available (e.g., lack of tracers or temporary camera failure).



J. Mar. Sci. Eng. 2016, 4, 1 21 of 23

References

1. Wang, X.; Liu, P.L. An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean
tsunami. J. Hydraul. Res. 2006, 44, 147–154.

2. Geophysical Loss Events Worldwide 1980–2014; NatCatSERVICE Munich Re: Munich, Germany, 2015.
3. Synolakis, C.E.; Kong, L. Runup measurements of the December 2004 Indian Ocean tsunami. Earthq. Spectra

2006, 22, 67–91.
4. Synolakis, C.E.; Bernard, E.N. Tsunami science before and beyond Boxing Day 2004. Philos. Trans. R. Soc.

Lond. A Math. Phys. Eng. Sci. 2006, 364, 2231–2265.
5. Briggs, M.J.; Synolakis, C.E.; Hughes, S.A. Laboratory measurements of tsunami run-up, 1993. In

Proceedings of the Tsunami, Wakayama, Japan, 23–27 August 1993.
6. Gedik, N.; Irtem, E.; Kabdasli, S. Laboratory investigation of tsunami run-up. Ocean Eng. 2005, 32, 513–528.
7. Jensen, A.; Pedersen, G.; Wood, D. An experimental study of wave run-up at a steep beach. J. Fluid Mech.

2003, 486, 161–188.
8. Behrens, J. Numerical Methods in Support of Advanced Tsunami Early Warning. In Handbook of

Geomathematics; Freeden, W., Nashed, M.Z., Sonar, T., Eds.; Springer Verlag: Heidelberg, Berlin, Germany,
2010; pp. 399–416.

9. LeVeque, R.J.; George, D.L.; Berger, M.J. Tsunami modelling with adaptively refined finite volume methods.
Acta Numer. 2011, 20, 211–289.

10. Liu, P.L.F.; Yeh, H.H.J.; Synolakis, C. Advanced numerical models for simulating tsunami waves and
run-up. Advances in Coastal and Ocean Engineering; World Scientific Publishing Company Incorporated:
Ithaca, NY, USA, 2008; Volume 10.

11. Madsen, P.A.; Bingham, H.B.; Liu, H. A new Boussinesq method for fully nonlinear waves from shallow to
deep water. J. Fluid Mech. 2002, 462, 1–30.

12. Rakowsky, N.; Androsov, A.; Fuchs, A.; Harig, S.; Immerz, A.; Danilov, S.; Hiller, W.; Schröter, J.
Operational tsunami modelling with TsunAWI—Recent developments and applications. Nat. Hazards Earth
Syst. Sci. 2013, 13, 1629–1642.

13. Carrier, G.F.; Greenspan, H.P. Water waves of finite amplitude on a sloping beaching. J. Fluid Mech.
1958, 4, 97–109.

14. Madsen, P.A.; Schäffer, H.A. Analytical solutions for tsunami runup on a plane beach: Single waves,
N-waves and transient waves. J. Fluid Mech. 2010, 645, 27–57.

15. Goring, D.G. Tsunamis—The Propagation of Long Waves onto a Shelf, Technical Report Caltech KHR: KH-R-38;
California Institute of Technology: Pasadena, California, 1978.

16. Synolakis, C.E.; Deb, M.K.; Skjelbreia, J.E. The anomalous behaviour of the runup of cnoidal waves.
Phys. Fluids 1988, 31, 3–5.

17. Liu, P.L.F.; Cho, Y.S.; Briggs, M.J.; Kanoglu, U.; Synolakis, C.E. Runup of solitary waves on a circular island.
J. Fluid Mech. 1995, 302, 259–285.

18. Madsen, P.A.; Fuhrman, D.R.; Schäffer, H.A. On the solitary wave paradigm for tsunamis. J. Geophys. Res.
2008, 113, C12012.

19. Monaghan, J.J.; Kos, A. Scott Russel’s wave generator. Phys. Fluids 2000, 12, 622–630.
20. Synolakis, C.E. The Runup of Long Waves. PhD thesis, California Institute of Technology, Pasadena, CA,

USA, 1986.
21. Synolakis, C.E. The runup of solitary waves. J. Fluid Mech. 1987, 185, 523–545.
22. Titov, V.; Synolakis, C.E. Numerical Modeling of Tidal Wave Runup. J. Waterway Port Coastal Ocean Eng.

1998, 124, 157–171.
23. Hammack, J.L. A note on tsunamis: Their generation and propagation in an ocean of uniform depth.

J. Fluid Mech. 1973, 60, 769–800.
24. Goseberg, N. A laboratory perspective of long wave generation. In Proceedings of the International

Offshore and Polar Engineering Conference, Rhodes, Greece, 17-23 June 2012; pp. 54–60.
25. Chanson, H.; Aoki, S.I.; Maruyama, M. An experimental study of tsunami runup on dry and wet horizontal

coastlines. Sci. Tsunami Hazards 2003, 20, 278–293.
26. Goseberg, N.; Wurpts, A.; Schlurmann, T. Laboratory-scale generation of tsunami and long waves.

Coastal Eng. 2013, 79, 57–74.



J. Mar. Sci. Eng. 2016, 4, 1 22 of 23

27. Titov, V.; Gonzalez, F.J. Implementation and Testing of the Method of Splitting Tsunami (MOST) Model; NOAA
Technical Memorandum ERL PMEL-112 1927; NOAA: Seattle, WA, USA, 1997.

28. Hesthaven, J.S.; Warburton, T. Nodal Discontinuous Galerkin methods: Algorithms, Analysis, and Applications;
Springer: New York, NY, USA, 2008.

29. Giraldo, F.X.; Hesthaven, J.S.; Warburton, T. Nodal high-order discontinuous Galerkin methods for the
spherical shallow water equations. J. Comput. Phys. 2002, 181, 499–525.

30. Kelly, J.; Giraldo, F. Continuous and Discontinuous Galerkin Methods for a Scalable 3D Nonhydrostatic
Atmospheric Model: limited-area mode. J. Comput. Phys. 2012, 231, 7988–8008.

31. Synolakis, C.E.; Bernard, E.N.; Titov, V.V.; Kanoglu, U.; Gonzalez, F.I. Validation and Verification of Tsunami
Numerical Models. Pure Appl. Geophys. 2008, 165, 2197–2228.

32. Battjes, J.A. Surf similarity, 1974. In Proceedings of the 14th International Coastal Engineering Conference
(ASCE), Copenhagen, Denmark, 24–28 June 1974,

33. Goseberg, N. The Run-up of Long Waves—Laboratory-Scaled Geophysical Reproduction and Onshore
Interaction with Macro-Roughness Elements. PhD Thesis, The Leibniz University Hannover, Hannover,
Germany, 2011.

34. Goseberg, N. Reduction of maximum tsunami run-up due to the interaction with beachfront
development—Application of single sinusoidal waves. Nat. Hazards Earth Syst. Sci. 2013, 13, 2991–3010.

35. Goseberg, N.; Schlurmann, T. Non-stationary flow around buildings during run-up of tsunami waves on
a plain beach. In Coastal Engineering Proceedings; Lynett, P., Ed.; World Scientific Publishing Company
Incorporated: Seoul, South Korea, 2014; Volume 1.

36. Goseberg, N.; Bremm, G.C.; Schlurmann, T.; Nistor, I. A transient approach flow acting on a square
cylinder—Flow pattern and horizontal forces. In Proceedings of the 36th IAHR World Congress, Hague,
The Netherlands, 28 June–3 July 2015; pp. 1–12.

37. Bremm, G.C.; Goseberg, N.; Schlurmann, T.; Nistor, I. Long Wave Flow Interaction with a Single Square
Structure on a Sloping Beach. J. Mar. Sci. Eng. 2015, 3, 821–844.

38. Goseberg, N.; Schlurmann, T. Interaction of idealized urban infrastructure and long waves during run-up
and on-land flow process in coastal regions. Proceedings of the International Conference on Coastal Engineering;
Lynett, P., Smith, J.M., Eds.; World Scientific Publishing Company Incorporated: Santander, Spain, 2012.

39. Müller, D.R. Auflaufen und Überschwappen von Impulswellen an Talsperren. PhD Thesis, Mitteilungen
des Instituts, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der Eidgenössischen Hochschule
Zürich, Zürich, Germany, 1995. (In German)

40. Heller, V. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 2011, 49, 293–306.
41. Schüttrumpf, H. Wellenüberlaufströmung bei Seedeichen—Experimentelle und theoretische

Untersuchungen. PhD Thesis, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany,
2001. (In German)

42. Le Méhauté, B. An Introduction to Hydrodynamics & Water Waves; Springer: New York, NY, USA; Heidelberg,
Berlin, Germany, 1976.

43. Fuchs, H.; Hager, W.H. Scale effects of impulse wave run-up and run-over. J. Waterway Port Coastal
Ocean Eng. 2012, 138, 303–311.

44. Dingemann, M.W. Water wave propagation over uneven bottom. Part 1. Linear wave propagation.
In Advanced Series on Ocean Engineering; World Scientific: Ithaca, NY, USA, 1997; Volume 13.

45. Peakall, J.; Warburton, J. Surface tension in small hydraulic river models—The significance of the Weber
number. J. Hydrology 1996, 53, 199–212.

46. Cockburn, B.; Lin, S.Y.; Shu, C.W. TVB Runge-Kutta local projection discontinuous Galerkin finite element
method for conservation laws III: One-dimensional systems. J. Comput. Phys. 1989, 84, 90–113.

47. Vater, S.; Beisiegel, N.; Behrens, J. A Limiter-Based Well-Balanced Discontinuous Galerkin Method for
Shallow-Water Flows with Wetting and Drying: One-Dimensional Case. Adv. Water Resour. 2015, 85, 1–13.

48. Shu, C.W.; Osher, S. Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes.
J. Comput. Phys. 1988, 77, 439–471.

49. Gottlieb, S.; Shu, C.W.; Tadmor, E. Strong Stability-Preserving High-Order Time Discretization Methods.
SIAM Rev. 2001, 43, 89–112.

50. Courant, R.; Friedrichs, K.O.; Lewy, H. Über die partiellen Differenzengleichungen der mathematischen
Physik. Math. Ann. 1928, 100, 32–74.



J. Mar. Sci. Eng. 2016, 4, 1 23 of 23

51. Cockburn, B.; Shu, C.W. The Runge-Kutta Local Projection P1-Discontinuous-Galerkin Finite Element
Method for Scalar Conservation Laws. RAIRO Modél. Math. Anal. Numér. 1991, 25, 337–361.

52. Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3.
53. Madsen, P.A.; Fuhrman, D.R. Run-up of tsunamis and long waves in terms of surf-similarity. Coastal Eng.

2008, 55, 209–223.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open
access article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Methodology
	Theoretical Background
	Physical Model
	Scale Effects
	Numerical Model
	Boundary Conditions

	Results
	Quality of Experimentally Generated Waves
	Validation of the Numerical Model
	Shoreline Motion
	Run-up and Run-down of Long Waves
	Shoreline Velocity during Run-up and Run-down

	Extremal Shoreline Dynamics
	Shoreline Location
	Shoreline Velocity


	Discussion and Conclusions

