806 research outputs found

    Experiments ràbdics a les mines de potassa de Riedel

    Get PDF

    The life cycle of starbursting circumnuclear gas discs

    Get PDF
    High-resolution observations from the sub-mm to the optical wavelength regime resolve the central few 100pc region of nearby galaxies in great detail. They reveal a large diversity of features: thick gas and stellar discs, nuclear starbursts, in- and outflows, central activity, jet interaction, etc. Concentrating on the role circumnuclear discs play in the life cycles of galactic nuclei, we employ 3D adaptive mesh refinement hydrodynamical simulations with the RAMSES code to self-consistently trace the evolution from a quasi-stable gas disc, undergoing gravitational (Toomre) instability, the formation of clumps and stars and the disc's subsequent, partial dispersal via stellar feedback. Our approach builds upon the observational finding that many nearby Seyfert galaxies have undergone intense nuclear starbursts in their recent past and in many nearby sources star formation is concentrated in a handful of clumps on a few 100pc distant from the galactic centre. We show that such observations can be understood as the result of gravitational instabilities in dense circumnuclear discs. By comparing these simulations to available integral field unit observations of a sample of nearby galactic nuclei, we find consistent gas and stellar masses, kinematics, star formation and outflow properties. Important ingredients in the simulations are the self-consistent treatment of star formation and the dynamical evolution of the stellar distribution as well as the modelling of a delay time distribution for the supernova feedback. The knowledge of the resulting simulated density structure and kinematics on pc scale is vital for understanding inflow and feedback processes towards galactic scales.Comment: accepted by MNRA

    Targeted β-Phase Formation in Poly(fluorene)-Ureasil Grafted Organic-Inorganic Hybrids

    Get PDF
    © 2017 American Chemical Society. The development of synthetic strategies to control the molecular organization (and inherently linked optoelectronic properties) of conjugated polymers is critical for the development of efficient light-emitting devices. Here, we report a facile route using sol-gel chemistry to promote the formation of the β-phase through the covalent-grafting of poly[(9,9-dioctylfluorene)-co-(9,9-bis(8-hydroxyoctyl)fluorene)] (PFO-OH) to poly(oxyalkylene)/siloxane hybrids known as ureasils, due to the urea linkages binding the organic and inorganic components. Although grafting occurs within the siliceous domains, the degree of branching of the organic backbone determines the packing of the PFO-OH chains within the ureasil framework. Moreover, photoluminescence studies indicate that physical confinement also plays a key role in promoting the evolution of the β-phase of PFO-OH as the sol-gel transition proceeds. Spectroscopic and structural analyses reveal that dibranched ureasils promote linear packing of the PFO-OH chains, while tribranched ureasils exhibit a more open, distorted structure that restricts the packing efficacy and reduces the number of covalent anchorages. These results indicate that the organic-inorganic hybrid structure induces distinct levels of β-phase formation and that covalent grafting is a versatile approach to design novel poly(fluorene) hybrid materials with tailored optical properties

    Turbulent flame shape switching at conditions relevant for gas turbines

    Get PDF
    Abstract A numerical investigation is conducted in this work to shed light on the reasons leading to different flame configurations in gas turbine combustion chambers of aeronautical interest. Large eddy simulations (LES) with a flamelet-based combustion closure are employed for this purpose to simulate the DLR-AT Big Optical Single Sector (BOSS) rig fitted with a Rolls-Royce developmental lean burn injector. The reacting flow field downstream this injector is sensitive to the intricate turbulent-combustion interaction and exhibits two different configurations: (i) a penetrating central jet leading to an M-shape lifted flame; or (ii) a diverging jet leading to a V-shaped flame. First, the LES results are validated using available BOSS rig measurements, and comparisons show that the numerical approach used is consistent and works well. The turbulent-combustion interaction model terms and parameters are then varied systematically to assess the flame behavior. The influences observed are discussed in the paper from physical and modelling perspectives to develop physical understanding on the flame behavior in practical combustors for both scientific and design purposes.Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 686332

    Antichain cutsets of strongly connected posets

    Full text link
    Rival and Zaguia showed that the antichain cutsets of a finite Boolean lattice are exactly the level sets. We show that a similar characterization of antichain cutsets holds for any strongly connected poset of locally finite height. As a corollary, we get such a characterization for semimodular lattices, supersolvable lattices, Bruhat orders, locally shellable lattices, and many more. We also consider a generalization to strongly connected hypergraphs having finite edges.Comment: 12 pages; v2 contains minor fixes for publicatio

    Impact of E-Bikes on Cycling in Hilly Areas: Participants’ Experience of Electrically-Assisted Cycling in a UK Study

    Get PDF
    Electrically-assisted cycling can make a major contribution to sustainable mobility. For some people, hills are a barrier for cycling. This paper focuses on how and why electrically-assisted bikes make a difference to cycling in hilly contexts, and can thus be an important element of sustainable mobility in hilly geographies. It makes a novel contribution in being able to draw on recorded sensor data of the actual use of assistance in relation to the specific geography of the route cycled (GPS data), and interview/survey material. It shows that e-bikes extend the range, nature and scope of journeys manageable by bike, and therefore the general viability of e-bikes as alternative to other modes. It highlights that the benefits of using e-bikes are often also psychological, since they can change the overall enjoyability of the cycling experience in hilly areas. Resulting policy recommendations, that could lead to significant CO2 savings through the uptake of e-cycling in hilly contexts, include ‘try before you buy’ schemes, training for e-bike users and investing in relevant cycling infrastructure
    corecore