5,526 research outputs found
Operational methods in the study of Sobolev-Jacobi polynomials
Inspired by ideas from umbral calculus and based on the two types of integrals occurring in the defining equations for the gamma and the reciprocal gamma functions, respectively, we develop a multi-variate version of umbral calculus and of the so-called umbral image technique. Besides providing a class of new formulae for generalized hypergeometric functions and an implementation of series manipulations for computing lacunary generating functions, our main application of these techniques is the study of Sobolev-Jacobi polynomials. Motivated by applications to theoretical chemistry, we moreover present a deep link between generalized normal-ordering techniques introduced by Gurappa and Panigrahi, two-variable Hermite polynomials and our integral-based series transforms. Notably, we thus calculate all K-tuple L-shifted lacunary exponential generating functions for a certain family of Sobolev-Jacobi (SJ) polynomials explicitly
Recommended from our members
Electronic properties of LaO1-xFxFeAs in the normal state probed by nmr/nqr
We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on powders of the new LaO1−xFxFeAs superconductor for x=0 and 0.1 at temperatures up to 480 K, and compare our measured NQR spectra with local density approximation (LDA) calculations. For all three nuclei in the x=0.1 material, it is found that the local Knight shift increases monotonically with an increase in temperature, and scales with the macroscopic susceptibility, suggesting a single magnetic degree of freedom. Surprisingly, the spin lattice relaxation rates for all nuclei also scale with one another, despite the fact that the form factors for each site sample different regions of q-space. This result suggests a lack of any q-space structure in the dynamical spin susceptibility that might be expected in the presence of antiferromagnetic correlations. Rather, our results are more compatible with simple quasi-particle scattering. Furthermore, we find that the increase in the electric field gradient at the As cannot be accounted for by LDA calculations, suggesting that structural changes, in particular the position of the As in the unit cell, dominate the NQR response
New insight into the physics of iron pnictides from optical and penetration depth data
We report theoretical values for the unscreened plasma frequencies Omega_p of
several Fe pnictides obtained from DFT based calculations within the LDA and
compare them with experimental plasma frequencies obtained from reflectivity
data. The sizable renormalization observed for all considered compounds points
to the presence of many-body effects beyond the LDA. From the large empirical
background dielectric constant of about 12-15, we estimate a large arsenic
polarizability of about 9.5 +- 1.2 Angstroem^3 where the details depend on the
polarizabilities of the remaining ions taken from the literature. This large
polarizability can significantly reduce the value of the Coulomb repulsion U_d
about 4 eV on iron known from iron oxides to a level of 2 eV or below. In
general, this result points to rather strong polaronic effects as suggested by
G.A. Sawatzky et al., in Refs. arXiv:0808.1390 and arXiv:0811.0214 (Berciu et
al.). Possible consequences for the conditions of a formation of bipolarons are
discussed, too. From the extrapolated muon spin rotation penetration depth data
at T= 0 and the experimental Omega_p we estimate the total coupling constant
lambda_tot for the el-boson interaction within the Eliashberg-theory adopting a
single band approximation. For LaFeAsO_0.9F_0.1 a weak to intermediately strong
coupling regime and a quasi-clean limit behaviour are found. For a pronounced
multiband case we obtain a constraint for various intraband coupling constants
which in principle allows for a sizable strong coupling in bands with either
slow electrons or holes.Comment: 34 pages, 10 figures, submitted to New Journal of Physics
(30.01.2009
Magnetic behavior of single crystalline HoPdSi
The magnetic behavior of single-crystal HoPdSi, crystallizing in an
AlB-derived hexagonal structure, is investigated by magnetic susceptibility
() and electrical resistivity () measurements along two directions.
There is no dramatic anisotropy in the high temperature Curie-Weiss parameter
or in the and isothermal magnetization data, though there is a
noticeable anisotropy in the magnitude of between two perpendicular
orientations. The degree of anisotropy is overall less prominent than in the Gd
(which is an S-state ion!) and Tb analogues. A point of emphasis is that this
compound undergoes long range magnetic ordering below 8 K as in the case of
analogous Gd and Dy compounds. Considering this fact for these compounds with
well-localised f-orbital, the spin glass freezing noted for isomorphous U
compounds in the recent literature could be attributed to the role of the
f-ligand hybridization, rather than just Pd-Si disorder.Comment: Physical Review B, in pres
Evidence for Pauli-limiting behaviour at high fields and enhanced upper critical fields near T_c in several disordered FeAs based Superconductors
We report resistivity and upper critical field B_c2(T) data for disordered
(As deficient) LaO_0.9F_0.1FeAs_1-delta in a wide temperature and high field
range up to 60 T. These samples exhibit a slightly enhanced superconducting
transition at T_c = 28.5 K and a significantly enlarged slope dB_c2/dT = -5.4
T/K near T_c which contrasts with a flattening of B_c2(T) starting near 23 K
above 30 T. The latter evidences Pauli limiting behaviour (PLB) with B_c2(0)
approximately 63 T. We compare our results with B_c2(T)-data from the
literature for clean and disordered samples. Whereas clean samples show almost
no PLB for fields below 60 to 70 T, the hitherto unexplained pronounced
flattening of B_c2(T) for applied fields H II ab observed for several
disordered closely related systems is interpreted also as a manifestation of
PLB. Consequences are discussed in terms of disorder effects within the frames
of (un)conventional superconductivity, respectively.Comment: 2 pages, 3 figures, submitted to M2S Tokyo 0
Electronic properties of LaOFFeAs in the normal state probed by NMR/NQR
We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear
quadrupole resonance (NQR) measurements on powders of the new LaO1-xFxFeAs
superconductor for x = 0 and x = 0.1 at temperatures up to 480 K, and compare
our measured NQR spectra with local density approximation (LDA) calculations.
For all three nuclei in the x = 0.1 material, it is found that the local Knight
shift increases monotonically with an increase in temperature, and scales with
the macroscopic susceptibility, suggesting a single magnetic degree of freedom.
Surprisingly, the spin lattice relaxation rates for all nuclei also scale with
one another, despite the fact that the form factors for each site sample
different regions of q-space. This result suggests a lack of any q-space
structure in the dynamical spin susceptibility that might be expected in the
presence of antiferromagnetic correlations. Rather, our results are more
compatible with simple quasi-particle scattering. Furthermore, we find that the
increase in the electric field gradient at the As cannot be accounted for by
LDA calculations, suggesting that structural changes, in particular the
position of the As in the unit cell, dominate the NQR response.Comment: 17 pages, 6 figure
Nanoscale Electronic Order in Iron Pnictides
The charge distribution in RFeAs (R=La, Sm) iron pnictides is probed using As NQR. Whereas undoped and optimally-doped/overdoped compounds feature a single charge environment, two charge environments are detected in the underdoped region. Spin- lattice relaxation measurements show their coexistence at the nanoscale. Together with the quantitative variations of the spectra with doping, they point at a local electronic order in the iron layers, where low- and high-doping-like regions would coexist. Implications for the interplay of static magnetism and superconductivity are discussed
- …