11,827 research outputs found

    Application development for multicore processor

    Get PDF
    With multicore processors now in every computer, server, and embedded device, the need for cost-effective, reliable parallel software has never been greater. The efficiency of single core processors does not match the necessary levels for the development of applications

    On Spatial Consensus Formation: Is the Sznajd Model Different from a Voter Model?

    Full text link
    In this paper, we investigate the so-called ``Sznajd Model'' (SM) in one dimension, which is a simple cellular automata approach to consensus formation among two opposite opinions (described by spin up or down). To elucidate the SM dynamics, we first provide results of computer simulations for the spatio-temporal evolution of the opinion distribution L(t)L(t), the evolution of magnetization m(t)m(t), the distribution of decision times P(τ)P(\tau) and relaxation times P(μ)P(\mu). In the main part of the paper, it is shown that the SM can be completely reformulated in terms of a linear VM, where the transition rates towards a given opinion are directly proportional to frequency of the respective opinion of the second-nearest neighbors (no matter what the nearest neighbors are). So, the SM dynamics can be reduced to one rule, ``Just follow your second-nearest neighbor''. The equivalence is demonstrated by extensive computer simulations that show the same behavior between SM and VM in terms of L(t)L(t), m(t)m(t), P(τ)P(\tau), P(μ)P(\mu), and the final attractor statistics. The reformulation of the SM in terms of a VM involves a new parameter σ\sigma, to bias between anti- and ferromagnetic decisions in the case of frustration. We show that σ\sigma plays a crucial role in explaining the phase transition observed in SM. We further explore the role of synchronous versus asynchronous update rules on the intermediate dynamics and the final attractors. Compared to the original SM, we find three additional attractors, two of them related to an asymmetric coexistence between the opposite opinions.Comment: 22 pages, 20 figures. For related publications see http://www.ais.fraunhofer.de/~fran

    New AGNs discovered by H.E.S.S

    Full text link
    During the last year, six new Active Galactic Nuclei (AGN) have been discovered and studied by H.E.S.S. at Very High Energies (VHE). Some of these recent discoveries have been made thanks to new enhanced analysis methods and are presented at this conference for the first time. The three blazars 1ES 0414+009, SHBL J001355.9-185406 and 1RXS J101015.9-311909 have been targeted for observation due to their high levels of radio and X-ray fluxes, while the Fermi/LAT catalogue of bright sources triggered the observation of PKS 0447-439 and AP Librae. Additionally, the BL Lac 1ES 1312-423 was discovered in the field-of-view (FoV) of Centaurus A thanks to the large exposure dedicated by H.E.S.S. to this particularly interesting source. The newly-discovered sources are presented here and in three companion presentations at this conference.Comment: 8 pages, 3 figures, proceeding from the 25th Texas Symposium on Relativistic Astrophysics (Heidelberg, Germany, 2010

    VHE Gamma-ray Afterglow Emission from Nearby GRBs

    Full text link
    Gamma-ray Bursts (GRBs) are among the potential extragalactic sources of very-high-energy (VHE) gamma-rays. We discuss the prospects of detecting VHE gamma-rays with current ground-based Cherenkov instruments during the afterglow phase. Using the fireball model, we calculate the synchrotron self-Compton (SSC) emission from forward-shock electrons. The modeled results are compared with the observational afterglow data taken with and/or the sensitivity level of ground-based VHE instruments (e.g. STACEE, H.E.S.S., MAGIC, VERITAS, and Whipple). We find that modeled SSC emission from bright and nearby bursts such as GRB 030329 are detectable by these instruments even with a delayed observation time of ~10 hours.Comment: Proceeding of "Heidelberg International Symposium on High Energy Gamma-Ray Astronomy", held in Heidelberg, 7-11 July 2008, submitted to AIP Conference Proceedings. 4 pages, 3 figures, 1 tabl

    Computational Fluid Dynamic Studies of Vortex Amplifier Design for the Nuclear Industry—I. Steady-State Conditions

    Get PDF
    In this study the effects of changes to the geometry of a vortex amplifier are investigated using computational fluid dynamics (CFD) techniques, in the context of glovebox operations for the nuclear industry. These investigations were required because of anomalous behavior identified when, for operational reasons, a long-established vortex amplifier design was reduced in scale. The aims were (i) to simulate both the anomalous back-flow into the glovebox through the vortex amplifier supply ports, and the precessing vortex core in the amplifier outlet, then (ii) to determine which of the various simulated geometries would best alleviate the supply port back-flow anomaly. Various changes to the geometry of the vortex amplifier were proposed; smoke and air tests were then used to identify a subset of these geometries for subsequent simulation using CFD techniques. Having verified the mesh resolution was sufficient to reproduce the required effects, the code was then validated by comparing the results of the steady-state simulations with the experimental data. The problem is challenging in terms of the range of geometrical and dynamic scales encountered, with consequent impact on mesh quality and turbulence modeling. The anomalous nonaxisymmetric reverse flow in the supply ports of the vortex amplifier has been captured and the mixing in both the chamber and the precessing vortex core has also been successfully reproduced. Finally, by simulating changes to the supply ports that could not be reproduced experimentally at an equivalent cost, the geometry most likely to alleviate the back-flow anomaly has been identified

    Exact Thermodynamics of the Double sinh-Gordon Theory in 1+1-Dimensions

    Get PDF
    We study the classical thermodynamics of a 1+1-dimensional double-well sinh-Gordon theory. Remarkably, the Schrodinger-like equation resulting from the transfer integral method is quasi-exactly solvable at several temperatures. This allows exact calculation of the partition function and some correlation functions above and below the short-range order (``kink'') transition, in striking agreement with high resolution Langevin simulations. Interesting connections with the Landau-Ginzburg and double sine-Gordon models are also established.Comment: 4 pages, 3 figures (embedded using epsf), uses RevTeX plus macro (included). Minor revision to match journal version, Phys. Rev. Lett. (in press

    Coexistence of Band Jahn Teller Distortion and superconductivity in correlated systems

    Full text link
    The co-existence of band Jahn-Teller (BJT) effect with superconductivity (SC) is studied for correlated systems, with orbitally degenerate bands using a simple model. The Hubbard model for a doubly degenerate orbital with the on-site intraorbital Coulomb repulsion treated in the slave boson formalism and the interorbital Coulomb repulsion treated in the Hartree-Fock mean field approximation, describes the correlated system. The model further incorporates the BJT interaction and a pairing term to account for the lattice distortion and superconductivity respectively. It is found that structural distortion tends to suppress superconductivity and when SC sets in at low temperatures, the growth of the lattice distortion is arrested. The phase diagram comprising of the SC and structural transition temperatures TcT_c and TsT_s versus the dopant concentration δ\delta reveals that the highest obtainable TcT_c for an optimum doping is limited by structural transition. The dependence of the occupation probabilities of the different bands as well as the density of states (DOS) in the distorted-superconducting phase, on electron correlation has been discussed.Comment: RevTex, 4 pages, 4 figuers (postscript files attached) Journal Reference : Phys. Rev. B (accepted for publication

    Electromagnetic transition from the 4+^+ to 2+^+ resonance in 8^8Be measured via the radiative capture in 4^4He+4^4He

    Get PDF
    An earlier measurement on the 4+^+ to 2+^+ radiative transition in 8^8Be provided the first electromagnetic signature of its dumbbell-like shape. However, the large uncertainty in the measured cross section does not allow a stringent test of nuclear structure models. The present paper reports a more elaborate and precise measurement for this transition, via the radiative capture in the 4^4He+4^4He reaction, improving the accuracy by about a factor of three. The {\it ab initio} calculations of the radiative transition strength with improved three-nucleon forces are also presented. The experimental results are compared with the predictions of the alpha cluster model and {\it ab initio} calculations.Comment: 5 pages and 7 figures, Submitted to Physical Review Letter
    corecore