
Application Development for multicore

Processor

Submitted in partial fulfillment of
the requirements for the award of the degree of

Bachelor of Technology
in

Computer Science and Engineering

Submitted by

Roll No Names of Students

110CS0118 John Diptikanta Behera
110CS0152 Biswa Ranjan Sethy
110CS0480 Aditya Kumar

Under the guidance of
Prof. B D Sahoo

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Rourkela, Odisha, India – 769008

2010-2014 batch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53190079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Application Development for multicore

Processor

Submitted in partial fulfillment of
the requirements for the award of the degree of

Bachelor of Technology
in

Computer Science and Engineering

Submitted by

Roll No Names of Students

110CS0118 John Diptikanta Behera
110CS0152 Biswa Ranjan Sethy
110CS0480 Aditya Kumar

Under the guidance of
Prof. B D Sahoo

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Rourkela, Odisha, India – 769008

2010-2014 batch

Department of Computer Science and
Engineering

National Institute of Technology Rourkela

Certificate

This is to certify that the work in this Thesis Report entitled Application
Development For Multicore Processor by students whose names are given
below has been carried out under my supervision in partial fulfillment of the
requirements for the degree of Bachelor of Technology in Computer Science
and Engineering,during session 2013-2014 in the Department of Computer
Science and Engineering, National Institute of Technology, Rourkela. Nei-
ther this thesis nor any part of it has been submitted for any degree or
academic award elsewhere

Roll No Names of Students

110CS0118 John Diptikanta Behera
110CS0154 Biswa Ranjan Sethy
110CS0148 Aditya Kumar

Prof B D Sahoo
(Dept Of Computer Science and Engineering)

Acknowledgments

It is not possible to complete a thesis without considerable support of many
great people. First and foremost, We are greatly indebted to our advisor
Prof. Bibudatta sahoo, Professor in CSE department of NIT Rourkela for
his guidance, encouragement, motivation, and continued support throughout
our academic years at NIT. He has allowed us to pursue our research interests
with sufficient freedom, while always being there to guide us. Working with
him has been one of the most rewarding experiences of our Btech life.

we have been fortunate to have met great friends throughout our BTECH
journey. We are forever grateful for their moral support, encouragement, and
true friendship

We are grateful to all the staffs of the computer science department for
their generous help in various ways for the completion of this thesis. Last
but not least, We would forever indebted to our parents. They have been a
great source of inspiration to us. This would have not been possible without
their love, support, and continuous encouragement.

(John Diptikanta Behera) (Adityas Kumar) (Biswa Ranjan Sethy)

May 2014
National Institute of Technology Rourkela

ii

Abstract

With multicore processors now in every computer, server, and embedded
device, the need for cost-effective, reliable parallel software has never been
greater. The efficiency of single core processors does not match the neces-
sary levels for the development of applications. Performance means more
than wringing additional benefits from a single application because users
commonly multi- task, actively toggling between two or more applications or
working in environments in which many background processes compete for
scarce processor resources. All major Operating systems, including Mac OS
X, Microsoft Windows Vista, Windows Server, Red Hat Linux, and Novell
SuSE Linux, already are threaded to take advantage of Hyper-Threading
Technology and now multi-core architecture. Any program that is in a
class of applications where threading is already relatively common video
encoding, 3D rendering, video/photo editing and high performance comput-
ing/workstation applications are good candidates to be moved from serial to
multithreaded multi-core systems. The speed up achieved can be measured
using several laws like Ahmdals law, Gustafans law, etc. Multi-core architec-
tures like the C64 could be used to achieve a high performance implemen-
tation of FFT both in 1D and 2D cases. Graphics processing units(GPUs)
are further improvements on multicore architecture that process the graphics
and the CPU codes in parallel, to give improved results. One such example
is the speed up achieved in implementing the Radix sort on the CPU and
the GPU.

Keywords: multicore architecture , Ahmdals law,Gustafans law, imple-
menting FFT, sorting on GPU

Contents

Acknowledgements ii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement and Objective 3
1.3 Organisation Of The Thesis 4

2 Architecture And Program Design 5
2.1 Architecture . 5
2.2 Design Consideration . 6
2.3 Choice of Language And Library 7
2.4 Measuring Benefits . 7

2.4.1 Speed up factor . 7
2.4.2 Communication Overhead 8
2.4.3 Estimating communication Overhead 8
2.4.4 Amdahl’s law . 10
2.4.5 Gustafason’s Law . 12

3 Implementation and simulations 14
3.1 Fast Fourier Transformation 14

3.1.1 Introduction . 14
3.1.2 Background . 15
3.1.3 Algorithm . 17
3.1.4 Performance Complexity 20
3.1.5 Communication Overhead between cores 21
3.1.6 Analysis Of Core Utilization 22
3.1.7 Conclusion . 23

3.2 Sorting On GPU . 25
3.2.1 Introduction . 25
3.2.2 CPU Vs. GPU . 26
3.2.3 Architecture . 27

i

3.2.4 Conclusion . 30

ii

List of Figures

2.1 Basic Multicore Architecture having 4 cores 6
2.2 This figure shows different delays 9
2.3 Amdhals law . 11
2.4 Gustafason’s Law . 13

3.1 FFT Decomposition . 16
3.2 Algorithm 1(part 1) For FFT 18
3.3 Algorithm 2(part 2) for FFT 19
3.4 Communication Betwwen cores 21
3.5 Table showing data for FFT implementation 24
3.6 Graph Showing Core Utilization For FFT 24
3.7 Basic GPU Architecture . 28
3.8 Graph For Sorting on GPU 31

iii

Chapter 1

Introduction

The line ”Slow and steady wins the race” now-a-days does not hold true in
a lot of fields. The proverb loses its effectiveness as we have a mountain load
of works each and every day. So these days its all about fast and accurate
work. Time complexity is a big issue in our day to day life. We are suffering
from these kind of problems in the software field as well.

With the growth of our world, Software world is also developing con-
currently in a dynamic manner. In this fast forward world every thing needs
to be done shortly and accurately. Time complexity is a big issue as we are
loaded with huge amount of work.

With the generation of new tools and techniques ,in quick time it forced the
software world to look for new way to design software . Here some approaches
are mentioned which really shows some kind of solutions to these problems.

The multicore revolution is within our reach. For supercomputers or clus-
ters ,Parallel processing no longer remains as the exclusive domain. Hardware
-level parallel processing and software - level parallel processing are more fre-
quently used every where even in the entry - level server and even the basic
developer workstations.The main issue is ,what does this mean for the soft-
ware developer and what impact will it have on the software development
process. In the competetion of manufacturing the fastest computer, it is
now more attractive for chip manufacturers to carry multiple processors on
a single chip rather than increase the speed of the processor. Until now the
software developer could rely on the next new processor to speed up the
software without having to make any actual modifications to the software.
Those are gone. In order to increase overall system performance efficiently,

1

computer manufacturers have decided to add more processors rather than
increase their clock frequencies. This means if the software developer wants
the application to benefit from the next new processor, the application will
have to be modified to exploit the core part of the computers.

Though single core application development and sequential programming
have a place and will remain with us, the landscape of software develop-
ment now seems to be shifted toward multithreading and multiprocessing.
Parallel programming techniques that were once the only concern of theo-
retical computer scientists and university academics, are in the process of
being reworked for the masses. The ideas of multicore application design
and development are now a concern for the mainstream.

1.1 Motivation

The past decade has seen tremendous advances in microprocessor technol-
ogy. Clock rates of processors have increased from about 40 MHz (e.g., a
MIPS R3000, circa 1988) to over 2.0 GHz (e.g., a Pentium 4, circa 2002). At
the same time, processors are now capable of executing multiple instructions
in the same cycle. The average number of cycles per instruction (CPI) of
high end processors has improved by roughly an order of magnitude over the
past 10 years. All this translates to an increase in the peak floating point
operation execution rate (floating point operations per second, or FLOPS)
of several orders of magnitude. A variety of other issues have also become
important over the same period. Perhaps the most prominent of these is the
ability (or lack thereof) of the memory system to feed data to the proces-
sor at the required rate. Significant innovations in architecture and software
have addressed the alleviation of bottlenecks posed by the data path and the
memory. The role of concurrency in accelerating computing elements has
been recognized for several decades. However, their role in providing mul-
tiplicity of data paths, increased access to storage elements (both memory
and disk), scalable performance, and lower costs is reflected in the wide va-
riety of applications of parallel computing. Desktop machines, engineering
workstations, and compute servers with two, four, or even eight processors
connected together are becoming common platforms for design applications.
Large scale applications in science and engineering rely on larger configura-
tions of parallel computers, often comprising hundreds of processors. Data
intensive platforms such as database or web servers and applications such
as transaction processing and data mining often use clusters of workstations
that provide high aggregate disk bandwidth. Applications in graphics and

2

visualization use multiple rendering pipes and processing elements to com-
pute and render realistic environments with millions of polygons in real time.
Applications requiring high availability rely on parallel and distributed plat-
forms for redundancy. It is therefore extremely important, from the point of
view of cost, performance, and application requirements, to understand the
principles, tools, and techniques for programming the wide variety of parallel
platforms currently available. So,The idea is simple,To improve performance
by performing two or more operations at the same time. [1]

1.2 Problem Statement and Objective

The idea of a single processor computer is fast becoming archaic and quaint.
We now have to adjust our strategies when it comes to computing if we
are having Single core processor,But if we have multicore processor but the
program that is meant to run on multicore is written using single core coding
convention then we are likely to under utilize the availability of resource at
hand.

So the Current technology is fastly moving towards Parallel computing
and multicore programming.the reasons may be

• It is impossible to improve computer performance using a single pro-
cessor. Such processor would consume unacceptable power. It is more
practical to use many simple processors to attain the desired perfor-
mance using perhaps thousands of such simple computers. cite1

• Memory systems are still much slower than processors and their band-
width is limited also to one word per read/write cycle.

• As a result of the above observation, if an application is not running
fast on a single - processor machine, it will run even slower on new
machines unless it takes advantage of parallel processing.

This is almost like impossible to attain 100 percentage efficiency and accuracy
through single core computer where , performance over huge amount of com-
putational intensive data or information or instruction is concerned. So, our
main objective is to develop basic benchmark application to be deployed on
Multicore platforms which prove to be run faster on multicore environment
as compare to single core implementation.

3

1.3 Organisation Of The Thesis

This thesis is organised into 4 chapters.
Chapter 1: Chapter 1 Provides basic over view of the need of multicore
processors and its implementation along with the limitations of the single
core processors.Here we also represent our basic Problem statement and our
main objective.
Chapter 2:
In chapter 2 We represent the basic architecture of Multicore processors and
the basic principles used while designing a program targeting multicore ar-
chitecture.We also mentioned the basic Principles involved to show that a
problem is a proper candidate for Multicore programming.In this chapter we
have mentioned the language and library we have used for the simulation.e
have also mentioned the Reason for using those languages and library.in this
chapter we have also represnted the basic mathematical formulation to calcu-
late the computational complexity of a problem implemented using multicore
processor.
Chapter 3: In this chapter we have justified that FFT is a proper candidate
for multicore programming. along with the Algorithm and program design
paradigm for FFT in multicore.we have compared the Simulation result and
theoretical results.
Chapter 4: in this chapter we have moved little bit far from Multicore
processor and Provided a extensive study on NVDIA GPUs.We have imple-
mented Radix sort on GPU and compared the result with the conventional
CPU implementation.

4

Chapter 2

Architecture And Program
Design

2.1 Architecture

In general we know that a computer is based on a single processor or
single core or also known as CPU-chip, where program instructions are read
and get executed. various components like register file, ALU, bus interface,
system bus are included inside this single core. Mainly two components i.e
register file and ALU are combinedly considered as a single core. In the sub-
ject of the architecture of a multi-core processor we can say that a component
which is composed of two or more number of independent cores. In a simple
way It can be described as an integrated circuit which is integrated with two
or more individual processors or core in some sense. This is a new trend
in computer architecture. In short this is a replication of multiple processor
cores on a single core.The chip microprocessor implementations from the ma-
jor chip manufacturers each handle the Input-Output bus and the Front Side
Bus differently. Chip Microprocessors come in different types like two proces-
sors (dual core), four processors (quad core), and eight processors (octa core)
configurations. There are several variations in how cache and memory are
approached in the new chip microprocessors. Some configurations are mul-
tithreaded where some are not. The approaches to, processor to processor
communication vary among different implementations. The chip micropro-
cessor implementations from the major chip manufacturers each handle the
Input-Output bus and the Front Side Bus differently.

The below figure shows the basic architecture of multicore processor.
according to The IEEE Dictionary of Electrical and Electronics Terms ,a

multi processor architecture in which parallel processing can be performed.

5

Figure 2.1: Basic Multicore Architecture having 4 cores

It is the job of the programmer, compiler, or operating system to supply the
multiprocessor with tasks to keep the processors busy. [2]

2.2 Design Consideration

This section discusses some of the important aspects of the design of parallel
computing systems. The design of a parallel computing system requires con-
sidering many design options. The designer must choose a basic processor
architecture that is capable of performing the contemplated tasks. The pro-
cessor could be a simple element or it could involve a super scalar processor
running a multithreaded operating system.

The processors must communicate among themselves using some form of
an interconnection network . This network might prove to be a bottleneck
if it cannot support simultaneous communication between arbitrary pairs of
processors. Providing the links between processors is like providing physical
channels in telecommunications. How data are exchanged must be specifi ed.
A bus is the simplest form of interconnection network. Data are exchanged in
the form of words, and a system clock informs the processors when data are
valid. Nowadays, buses are being replaced by networks - on - chips (NoC) . In
this architecture, data are exchanged on the chip in the form of packets and
are routed among the chip modules using routers .Data and programs must
be stored in some form of memory system , and the designer will then have
the option of having several memory modules shared among the processors or
of dedicating a memory module to each processor. When processors need to
share data, mechanisms have to be devised to allow reading and writing data
in the different memory modules. The order of reading and writing will be
important to ensure data integrity. When a shared data item is updated by
one processor, all other processors must be somehow informed of the change
so they use the appropriate data value.

6

Parallel algorithms and parallel architectures are closely tied together. We
cannot think of a parallel algorithm without thinking of the parallel hard-
ware that will support it. Conversely, we cannot think of parallel hardware
without thinking of the parallel software that will drive it. Parallelism can
be implemented at different levels in a computing system using hardware and
software techniques

2.3 Choice of Language And Library

There are numerous Library available supporting almost every known pro-
gramming languages. I have chosen Pthread and Java Thread Library for
programming. Almost all Simulation and program are written using java
threads because the only way we can explore functionality of multicore is by
using threads.

• Machine independent : we can run our application in all machine
where JVM is installed. [3]

• Synchronization : Synchronization can be achieved easily

• Memory Management : Efficient memory management garbage col-
lection by JVM. [4]

2.4 Measuring Benefits

We review in this section some of the important results and benefits of
using parallel computing. But first, we identify some of the key parameters
that we will be studying in this section

2.4.1 Speed up factor

The potential benefit of parallel computing is typically measured by the time
it takes to complete a task on a single processor versus the time it takes to
complete the same task on N parallel processors. The speedup S (N) due
to the use of N parallel processors is defined by

S(N)=Tp(1) / Tp(N) where Tp(1) is the algorithm processing time on a sin-
gle processor and Tp(N) is the processing time on the parallel processors. In
an ideal situation, for a fully parallelizable algorithm, and when the commu-
nication time between processors and memory is neglected , we have Tp(N)
= Tp(1)/ N , and the above equation gives

7

S(N)=N

It is rare indeed to get this linear increase in computation domain due to
several factors, as we shall see Later. [5]

2.4.2 Communication Overhead

For single and parallel computing systems, there is always the need to read
data from memory and to write back the results of the computations. Com-
munication with the memory takes time due to the speed mismatch between
the processor and the memory.Moreover, for parallel computing systems,
there is the need for communication between the processors to exchange
data. Such exchange of data involves transferring data or messages across
the interconnection network.

1. Interconnection network delay : Transmitting data across the in-
terconnection network suffers from bit propagation delay, message/data
transmission delay, and queuing delay within the network. These fac-
tors depend on the network topology, the size of the data being sent,
the speed of operation of the network, and so on.

2. Memory bandwidth : No matter how large the memory capacity
is, access to memory contents is done using a single port that moves
one word in or out of the memory at any give memory access cycle.

3. Memory collisions : where two or more processors attempt to
access the same memory module. Arbitration must be provided to
allow one processor to access the memory at any given time.

4. Memory wall : The speed of data transfer to and from the memory
is much slower than processing speed. This problem is being solved using
memory hierarchy such as
register↔ Cache↔ RAM ↔ ElectronicDisk ↔MagneticDisk ↔ OpticalDisk.
Different Delays Have been Shown in figure 2.2.

2.4.3 Estimating communication Overhead

Let us assume we have a parallel algorithm consisting of N independent tasks
that can be executed either on a single processor or on N processors. Un-
der these ideal circumstances, data travel between the processors and the
memory, and there is no inter processor communication due to the task in-
dependence. We can write under ideal circumstances

8

Figure 2.2: This figure shows different delays

T p(1)= N τp

T p(N)= τp

The time needed to input the data by a single processor is given by
T r(N)= τp

The time needed by the parallel processor to read data from memory is
given by

T r(1)= αTr(1) = αNτm

Where alpha(α) = factor that account the limitation of accessing the
shared memory. α = 1/N when each processor maintains its own copuy
of data. α = 1 when data are distributed to each task in order from a central
memory. In the worst case , we could have α ¿ N When all processor request
data and collide with each other we could conclude from the above concept
as

Writing back the results to the memory, also, might involve memory colli-
sions when the processor attempts to access the same memory module

Tw(1)=N τm

Tw(N)=αTw(1)=αNτm

9

For a single processor, the total time to complete a task, including memory
access overhead, is given by

Ttotal(1)=Tr(1)+Tp(1)+Tw(1)

Now let us consider the speedup factor when communication overhead is
considered

Ttotal(N)=Tr(N)+Tp(N)+Tw(N)

= 2Nατm+ τp

so , Total Speed up factor is given by

S(N)=Ttotal(1)/Ttotal(N)

Memory mismatrch ratio is given by R= τm/τp

2.4.4 Amdahl’s law

Assume an algorithm or a task is composed of parallizable fraction f and a
serial fraction 1-f . Assume the time needed to process this task on one single
processor is given by

Tp(1) = N(1− f)τp+Nfτp = Nτp

where the first term on the right-hand side (RHS) is the time the processor
needs to process the serial part. The second term on RHS is the time the
processor needs to process the parallel part. When this task is executed on
N parallel processors, the time taken will be given by

Tp(N) = N(1− f)τp+ fτp

where the only speedup is because the parallel part now is distributed
over N processors. Amdahl s law for speedup S (N), achieved by using N
processors, is given by

10

Figure 2.3: Amdhals law

To get any speedup, we must have 1-f <<f/N
this shows that f approaches to unity when N is very large.i.e no of processor
is large. figure 3 shows the speedup versus f for different values of N . The
solid line is for f = 0.99; the dashed line is for f = 0.9; and the dotted line
is for f = 0.5. We note from the figure that speedup is affected by the value
of f . As expected, larger f results in more speedup. However, note that
the speedup is most pronounced when f >0.5. Another observation is that
speedup saturates to a given value when N becomes large.

and it can be concluded that

S(N)=0 if f=0 Completely serial code
S(N)=1 when f=1 Completely parallel code

11

2.4.5 Gustafason’s Law

The predictions of speedup according to Amdahl s law are pessimistic.
Gustafson [6]madetheobservationthatparallelismincreasesinanapplicationwhentheproblemsizeincreases.RememberthatAmdahlslawassumedthatthefractionofparallelizablecodeisfixedanddoesnotdependonproblemsize.

To derive Gustafson Barsis formula for speedup, we start with the N
parallel processors fi rst. The time taken to process the task on N processors
is given by

Tp(N)=(1-f)τp+ fp = τp

To derive Gustafson Barsis formula for speedup, we start with the N
parallel processors fi rst. The time taken to process the task on N processors
is given by

Tp(1)=(1-f)τp+Nfτp

The speedup is given now by

S(N)=Tp(1)/Tp(N)

S(N)=(1-f)+Nf

S(N) = 1 + (N − 1)f

figure shows the speedup versus f for different values of N . The solid line
is for f = 0.99; the dashed line is for f = 0.9; and the dotted line is for f = 0.5.
Notice that there is speedup even for very small values of f and the situation
improves as N gets larger.

To get any speedup we must have f(N-1) >>1

12

Figure 2.4: Gustafason’s Law

13

Chapter 3

Implementation and
simulations

3.1 Fast Fourier Transformation

3.1.1 Introduction

The Discrete Fourier Transform (DFT) is one of the most widely used algo-
rithms in the fields of science and engineering, especially in the field of signal
processing. For many practical applications, it is important to have an imple-
mentation of DFT that is as fast as possible. Since 1965, various algorithms
have been proposed for computing DFTs efficiently. One such algorithm
is the Fast Fourier Transform (FFT) which produces the same result as the
DFT approaches, yet it is more efficient, often reducing the computation time
by factors of hundred. The FFT has been studied extensively as a frequency
analysis tool in diverse applications such as image processing, MPEG audio
coding, linear filtering, correlation analysis and spectrum analysis. FFT is
both computation-intensive and memory-intensive due to the large amount
of data involved in the underlying applications, so an efficient algorithm must
be developed for splitting up the input data among multiple cores so that
the efficiency can be improved when compared to that on a single core. In
this paper, we present an algorithm for parallelizing the computation of FFT
over a multicore architecture and put forth the way in which the cores would
communicate with each other in each round on multicore architectures. Our
design of the parallel algorithm is focused on efficient data distribution. The
algorithm divides the given inputs equally among the cores that are avail-
able. This ensures that the cores are all engaged in FFT computation till
their input chunks are processed. Also, a detailed analysis regarding the
number of cores that will be necessary for the computation of FFT in each

14

stage of the calculation has been performed. The results are compared for
different values to observe the optimal number of cores required for different
number of inputs so that many cores do not remain idle. With our proposed
algorithm, the cores do not need a master to calculate their core ids and to
calculate which other core to communicate with in the ith round. Instead the
cores calculate these themselves and continue with the calculation of FFT
algorithm with their input chunks. The rest of the Section is organised as
follows. In Section 2 we present the necessary background and the related
works for this paper. Section 3 deals with the system model, assumptions
regard- ing the system behavior, our proposed algorithm and an illustration.
Performance complexity and communication overhead between the cores are
discussed. In the Section 4 we present the core utilization formula derived
and the simulated graphs.

3.1.2 Background

Let x0,x1,.......xn be complex numbers.The DFT is Defined By the formula

In the above equation xn is the input sequence of data of length N. Ba-
sically, the computational problem for the DFT is to compute the sequence
Xk of N complex-valued numbers given an input sequence of data xn.

The radix-2 Cooley-Tukey algorithm for calculating FFT uses the divide
and conquer approach, i.e., decomposing and breaking the transform into
smaller transform and combining them to give the total transform [7, 8].
This is because a series of smaller problems is easier to solve than one large
one. The decomposition is reordering of the samples in the signal. Then the
initial FFT decomposition will be as shown in Figure 3.1 [9] . Table shows
the rearrangement pattern. We can observe from Table that the rearranged
input indices are in bit-reversed order of the original input indices.

15

Figure 3.1: FFT Decomposition

The algorithm divides this N-point data sequence into two N/2-point
data sequences f1(n) and f2(n), corresponding to the even-indexed and odd-
indexed points of x(n) respectively. Then the N -point DFT can be computed
as,

16

where Wnk are twiddle factors [9] (twiddle factors refers to the root-of-
unity complex multiplicative constants that are multiplied by the data in the
course of the algorithm), F1(k) and F2(k) are the N/2-point DFTs of f1(n)
and f2(n), respectively. The sub- problems F1(k) and F2(k) are recursively
solved to obtain the final solution of the original problem [10, 11].

3.1.3 Algorithm

The System model we propose assumes a multicore architecture with the
cores having shared memory through which data can be exchanged between
any two cores. The system takes N input points of FFT and calculates the
output samples. In this paper we focus on the most common FFT algorithm,
the radix-2 Cooley-Tukey DIT FFT algorithm which means the number of
output points can be expressed as a power of 2. In this paper we propose an
algorithm for implementing the FFT algorithm on a multicore architecture.
Our entire algorithm is divided as Algorithm 1 and Algorithm 2. Algorithm
1 describes the way input data should be split among multiple cores, how a
core id can be obtained and when a core should communicate with the other
core. Algorithm 2 describes the way to identify the core to communicate with
and get the results. For reducing the complexity in our system we assume
that the number of cores is also a power of 2. Because of this, even if the
number of cores available are not powers of 2, we choose the nearest power
of 2 and then proceed with our proposed algorithm. As a result of this, we
will be able to divide the number of input samples equally among all the
available cores.

Description Of Pseudocode

In this section we describe our proposed algorithm for implementing FFT on
multicore architectures. Our entire algorithm is divided as Algorithm 1 and
Algorithm 2.Algoriyhm 1 is shown in figure 3.2 and Algorithm 2 is represented
in Figure 3.3.For parallelizing the FFT, we propose the algorithm as given
in the pseudocode Algorithm 1.We take N number of input points and P
number of cores and give each core equal chunks of data of size S = N/P.
Each core calculates the number of bits that will be used to represent the
input indices (n) and the number of bits used to represent the core ids (p).
Using the input sequence, each core calculates its own unique core id by
taking the last p bits of the input indices that it gets.
The N point signal is decomposed into N/2 points in each stage until there
are N signals each containing a single point. An interlaced decomposition is
used each time a signal is broken into two, that is, the signal is separated

17

Figure 3.2: Algorithm 1(part 1) For FFT

into its even and odd numbered samples.
Figure 2 shows how the input samples are divided among given number of
cores and how

butterfly diagram is calculated at each stage. Initially width W will be 2
and the width increases by a factor 2 for each stage. Each core calculates the
FFT of the input points recursively till it computes the S point FFT. Till
this point the FFT window (W) is less than S and no communication with
another core is required as each core will have sufficient input samples to
calculate the W point FFT. After this the FFT window W becomes greater
than S and the cores need to communicate with other cores for getting the
previously computed results of the W/2 point FFT from other cores for
further computing the W point FFT. This process continues until the width
of the FFT window (W) equals the number of input samples (N) i.e., until
N point FFT is calculated
When W becomes greater than S, the algorithm to identify the core with
which communication has to be done is shown in the pseudo code Algorithm
2. According to the algorithm, each core gets the results from the other core
that differs by ith bit in the ith round. This can be formulated by XOR the
core id with the binary equivalent of 2(n-i)*(n-1) which gives the core id that

18

Figure 3.3: Algorithm 2(part 2) for FFT

differs by one bit in the ith place for the ith round. Here, it is observed that
after each core computes the S point FFT, at each round i, starting from 1,
the core communicates with another core whose core id differs by one bit in
the ith position from the left. And after the W point FFT is calculated, the
core whose id is smaller of the two stores the results.

Illustration

In order to understand the proposed parallel algorithms let us consider an
example where N = 16 and P = 4. Hence n = 4 and p = 2 where n is the
number of bits required to represent the given input samples in binary form
and p is the number of bits required to represent the core id.
Then the initial FFT decomposition will be as shown in Figure 3.1. The N
point signal is decomposed into N/2 points in each stage until there are N
signals each containing a single point.
Now the input to our proposed algorithm is the bit-reversed input sequence.
The size of input chunks given to each core will be S = 4(S = N/P), i.e., each
core will be given four bit-reversed input data samples. So in our example,
core 0 will get the input data samples located in the indices 0, 8, 4, 12, core
1 will get the input samples located in indices 2, 10, 6, 14, core 2 will get
the samples in the indices 1, 9, 5, 13 and core 3 will get the input samples
located in indices 3, 11, 7, 15. Now according to Algorithm 1, for obtaining
unique core ids, we take last p bits of the n bit input as core id. Therefore
for the example taken, the core ids are 00, 10, 01, 11 for the cores 0, 1, 2, 3
respectively.
Figure 2 shows how the input samples are divided among given number of
cores and how the butterfly diagram is calculated at each stage. We can see

19

from figure that intitially the width will be W = 2, so no communication
is required with the other core until W¿=4. Each core will have four input
samples and intitally each core will take two input samples (W = 2) and
calculate a 2 point FFT. Then two 2-point FFTs are taken and a 4-point
FFT is calculated.

At this stage W = 4, and no communication between cores is required
till this point as each core contains four input samples.So no communication
with other cores occurs for the following input pairs: (0, 8), (4, 12), (2, 10),
(6, 14), (1, 9), (5, 13), (3, 11), (7, 15), (0, 4), (2, 6), (1, 5), (3, 7). When W
¿ S, in round 1, each core communicates with the corresponding core which
has a one bit change in the first place in order to calculate an 8-point FFT.
Therefore, communication between processors is given by
Round 1 :
After the 8-point FFT is calculated by the cores,the result is stored in the
cores with lowest coreid, i.e. in our example result will be stored in the cores
having coreids coreid0(00) and coreid2(01) .so in the round 2,of the first pair
one core (with lowest value) is chosen and it communicate with a core having
a one bit change in the second place to calculate the 16 point FFT.
Round 2 :
00 (coreid0) ¡-¿ 01 (coreid2)
Figure 3.3 Shows the communication between the cores at each stage for the
example taken,till a 16 point FFT is calculated.

3.1.4 Performance Complexity

Algorithm 1 uses the FFT algorithm to calculate N point FFT. Hence from
the formula of FFT , there are N/2*log2N complex multiplications and
N*log2N complex additions. The reads and writes into the shared mem-
ory can be given by the formula where s = log2S . This is derived from the
knowledge that the cores start communicating with the other cores only after
their input chunk is processed.

20

Figure 3.4: Communication Betwwen cores

3.1.5 Communication Overhead between cores

The algorithm we propose is focused on efficient data distribution. In our
proposed Algorithm 1, based on the number of cores available for calculating
the N point FFT, we divide the input points equally among all the available
cores.

The reason for this approach is due to the fact that FFT algorithm has
both sequential and parallelizable parts. For example, in order to calculate
a 8 point FFT, first four 2-point FFTs, then two 4-point FFTs and finally
one 8-point FFT has to be calculated. The step of calculating the four
2-point FFTs is independent and can be parallelized. But the calculation
of two 4-point FFTs can be carried out only after calculating the all the
2-point FFTs. And finally 8 point FFT can be calculated only after the
4-point FFT computation is performed. These parts of the algorithm are
the serial execution parts. Such points in the algorithm can also be called
as the synchronization points . If the input data is not divided equally
among all the cores, then the waiting time at the synchronization points will
become larger than the total computation time. In our algorithm, based
on the number of cores, we divide the input samples evenly so that each
core takes the same amount of computation time, there by the waiting time
at the synchronization points will become negligible when compared to the
computation time.
Algorithm 2 gives the pseudocode for each core to find out which core to
get the value from, for calculating the next round of FFT. Hence, there
is no necessity for each core to wait for another core to inform about the
corresponding core to communicate with in each round. This reduces the
communication overhead that is faced while the master core communicates
with the other cores to inform the same.

21

3.1.6 Analysis Of Core Utilization

The maximum number of processors that will be needed for the calculation of
an N-point FFT will be N/2. But if we are given more number of cores than
the size of input samples, then the core utilization decreases. In contrast if
we have more of input samples for which FFT has to be calculated and less
number of cores , then the core utilization increases. However at each stage
of the butterfly diagram the number of cores utilized keep decreasing by a
factor P/2 and in the last stage only one core will be utilized to calculate
the final N-point FFT. Table 2 shows the core utilization for different input
pairs corresponding to different number of cores.
For calculating the overall core utilization, we have to consider two cases.
One where the number of cores are greater than or equal to half of the input
samples and the other case where the number of cores are less than half of the
input samples. We consider half of the input samples because the maximum
number of cores that will be needed for calculating an N point FFT is N/2.
For deriving an overall core utilization we sum up the number of cores being
utilized in each stage and compare it with the total number of cores available
until the algorithm completes.
In both cases the number of cores that will be utilized will be same; its only
the total number of cores that differs. The number of cores used in every
round will be decreased by a factor of 2 i.e., in round 1 where there is no
communication with other cores , all the cores will be utilized and in last
round only one core will be utilized to calculate the final point FFT. We can
also observe that until there is no communication with other core (i.e., when
the cores compute the input samples given to them), all the cores will be
utilized. When W becomes greater than S (number of input samples given
to each core), then the cores will communicate with other cores and from
there by the number of cores utilized will be reduced at each round. So the
total number of cores that will be utilized is given by the formula:

In Case 1, where the number of cores are less than half of the input samples,
each core will have more number of input samples (more than 2). So it means
there will be more number of rounds where the cores compute without having
to communicate with the other cores. In this case, we have to find out the
number of rounds where there is no communication with other cores and
number of rounds where there is communication. Then multiply each of
these with the number of cores i.e., P. Hence the formula in this case for the
total number of available cores is given as:

22

where(N/P - 1) are the number of rounds where there is no communication
with the other core and p is the number of rounds where there is communi-
cation with other cores.
In Case 2, where the number of cores are greater than or equal to half of the
input samples, for finding out the total number of cores available, we first
have to find out the number of rounds that algorithm takes to compute the
final point FFT and then multiply with the number of cores i.e., P. Hence
the formula in this case for the total number of available cores is given by
n*P.
Based on all the above details, the overall core utilization can be derived
using the below formulae:
Case 1 : P <N/2

Case 2 : P ≥ N/2

Figure 4 shows the core utilization for different input samples given P (num-
ber of cores) as 8, 32 and 256 respectively.
From Table 2 and Figure 4, we can deduce that when the number of input
samples is less, then lower number of cores gives a better core utilization.
But as the number of input samples increases, the core utilization increases
significantly with the number of cores.

3.1.7 Conclusion

Assuming F, the percentage of code that can be parallelized to be 95, the
maximum speedup that can be achieved by using N processors (for whatever
be the value of N) cannot exceed 7.8 times the speed of the program using a
single core.

23

Figure 3.5: Table showing data for FFT implementation

Figure 3.6: Graph Showing Core Utilization For FFT

24

3.2 Sorting On GPU

3.2.1 Introduction

Sorting is one of the most widely researched subjects. In
this hugely loaded data world we need to search things in a quick succession.
So in order to speed up the operation on thousands or millions of records
during a search operation we need some optimized way or path or concept
which is called as sorting. Sort is a fundamental central thing used in many
database operations. The main purpose of sorting concept is to optimize its
usefulness for some particular tasks to get the dataset arranged in an increas-
ing or decreasing order. So that dataset can be categorized easily. Sorting
is a computational building square of major significance and is a standout
amongst the most broadly considered algorithmic issues. The imperative-
ness of sorting has likewise prompt the outline of efcient sorting calculations
for an assortment of parallel architectures. Numerous calculations depend
on the accessibility of efcient sorting schedules as a premise for their own
particular efciency, and numerous different calculations might be helpfully
stated as far as sorting. Database frameworks make far reaching utilization
of sorting operations. The development of spatial information structures that
are crucial in machine design and geographic data frameworks is in a general
sense a sorting methodology. Efcient sort schedules are additionally a valu-
able building square in actualizing calculations like inadequate framework
augmentation and parallel programming examples like Mapreduce. It is in
this manner critical to give efcient sorting schedules on essentially any pro-
gramming stage, and as machine architectures develop there is a proceeding
need to investigate efcient sorting methods on rising architectures.

One of the overwhelming patterns in chip construction modeling as of late
has been constantly expanding chip-level parallelism. Multicore Cpusgiving
24 scalar centers, ordinarily expanded with vector unitsare presently mun-
dane and there is much evidence that the pattern towards expanding paral-
lelism will proceed towards ”many-core” chips that give far higher degrees of
parallelism. Gpus have been advanced by distributing multicore CPU sort
running on a 4-center 3.22 Ghz Intel Q9550 processor[12].

At the heading edge of this drive towards expanded chip- level parallelism
for quite a while and are as of now generally manycore processors. Current
NVIDIA Gpus, for instance, hold up to 240 scalar transforming components
for every chip [9], and as opposed to prior eras of Gpus, they might be
modified straightforwardly in C utilizing CUDA. In this paper, we depict

25

the outline of efcient sorting calculations for such manycore Gpus utilizing
CUDA. The programming exibility gave by CUDA and the current era of
Gpus permits us to think about a much more extensive reach of algorith-
mic decisions than were advantageous on past eras of Gpus. We specically
concentrate on two classes of sorting calculations: a radix sort that straight-
forwardly controls the twofold representation of keys and a consolidation
sort that requires just a correlation work on. The GPU is a massively mul-
tithreaded processor which can support, and indeed expects, several thou-
sand concurrent threads. Exposing large amounts of ne-grained parallelism
is critical for efcient algorithm design on such architectures. In radix sort, we
exploit the inherent ne-grained parallelism of the algorithm by building our
algorithm upon efcient parallel scan operations. We expose ne-grained paral-
lelism in merge sort by developing an algorithm for pairwise parallel merging
of sorted sequences, adapting schemes based on parallel splitting and binary
search previously described in the literature. We demonstrate how to impose
a block-wise structure on the sorting algorithms, allowing us to exploit the
fast on-chip memory provided by the GPU architecture. We also use this on-
chip memory for locally ordering data to improve coherence, thus resulting in
substantially better bandwidth utilization for the scatter steps used by radix
sort. Our experimental results demonstrate that our radix sort algorithm is
faster than all previously published GPU sorting techniques when running on
current-generation NVIDIA GPUs. Our tests further demonstrate that our
merge sort algorithm is the fastest comparison-based GPU sort algorithm
described in the literature, and is faster in several cases than other GPU-
based radix sort implementations. Finally, we demonstrate that our radix
sort is highly competitive with multicore CPU implementations, being up to
4.1 times faster than comparable routines on an 8-core 2.33 GHz Intel E5345
system and on average 23 percentage faster than the most[13,14].

Here we are doing some comparison test for efficient implementation of
sorting algorithm in CPU cores and GPU cores, where we got the conclusion
that GPU cores are more efficient than conventional way in CPU as they
take less time to complete the sorting process successfully.

3.2.2 CPU Vs. GPU

Comparison is based on how they process and what is their performance.
In a general way we can say that a CPU consists of a few number of cores
grouped together for sequential serial processing, while a GPU is consists of
thousands of smaller and more efficient cores designed for handling multiple

26

tasks simultaneously. We can implement sorting algorithm in a conventional
way ,so we have to concentrate on GPU implementation. Before the imple-
mentation part, lets discuss something about GPU in a quick succession [16]

GPU

A representation transforming unit (GPU), likewise sporadically called visual
handling unit (VPU), is a particular electronic circuit intended to quickly
control and adjust memory to quicken the production of pictures, in a cas-
ing cradle proposed for yield to showcase. Gpus are utilized within inserted
frameworks, cell telephones, PCs, workstations. Current GPUs are extremely
effective at controlling machine illustrations, and their profoundly parallel
structure makes them more successful than broadly useful-CPUs for calcula-
tions where handling of vast pieces of information is carried out in parallel.
GPU purpose or accelerate computing is based on the use of a GPU together
with a CPU to accelerate scientific, engineering, enterprise applications. In
this paper, we show a quick and efcient GPU string memory development
that enormously enhances the execution. Conversely, an union sort approach
dully stacks each one string from the worldwide memory (at whatever point
ties happen) in every consolidation step. We demonstrate a velocity up of
more than 10 over the best GPU string sorting methodologies. We acquire a
sorting throughput of 83 Mkeys/s on a dataset of 1 million arbitrary strings.
Our methodology can scale to a request of bigger info size than the reported
GPU string sort. On a 10 million words dataset we attain a throughput of
65 Mkeys
If question arises that how GPU is working, then here its answer. GPU
quickening processing offers extraordinary provision of execution by offload-
ing process serious bit of the requisition to the GPU, while the rest of the
code still runs on the CPU. From users’ point of view requisition basically
runs fundamentally[15]

3.2.3 Architecture

Each GPU is made up of SM(streaming) multi processors that is streaming
multi processors. The SM multiprocessors again consists of 8 scalar proces-
sors. Those SM processors only get one instruction at a time which means
8 scalar processors will execute the very instruction. And this is processed
through a wrap i.e 32 threads. Considering the whole GPU to be a couple of
SIMD (single instruction multiple data) units. NVIDIA calls it SIMT (single
instruction multiple thread).

27

Figure 3.7: Basic GPU Architecture

When examining the configuration of our sorting calculations, we briey
audit the remarkable subtle elements of NVIDIA’s present GPU building
design and the CUDA parallel programming model. As their name infers,
Gpus (Graphics Processing Units) happened as quickening agents for rep-
resentation provisions, prevalently those utilizing the Opengl and Directx
programming interfaces. Because of the huge parallelism inalienable in de-
sign, Gpus have long been enormously parallel machines. In spite of the fact
that they were initially simply xed-capacity gadgets, Gpus have quickly ad-
vanced into progressively exible programmable professional- cessors. Cutting
edge NVIDIA Gpusstarting with the Geforce 8800 GTXare completely pro-
grammable manycore chips manufactured around a cluster of parallel proces-
sors [9], as represented in Figure 1. The GPU comprises of a show of SM mul-
tiprocessors, each of which is equipped for supporting up to 1024 co-occupant
simultaneous strings. NVIDIA’s present items extend in size from 1 SM at
the low end to 30 Sms at the high end. A solitary SM demonstrated in Figure
1 holds 8 scalar SP processors, each with 1024 32-bit registers, for what added
up to 64kb of register space for every SM. Every SM is likewise outfitted with
a 16kb on-chip memory that has low get to idleness and high transfer speed,
like a L1 cache. All string administration, including creation, booking, and
hindrance synchronization is performed altogether in fittings by the SM with
basically zero overhead. To efciently deal with its expansive string populace,
the SM utilizes a SIMT (Single Instruction, Multiple Thread) structural engi-
neering. Strings are executed in gatherings of 32 called twists. The strings of
a twist are executed on partitioned scalar processors which impart a solitary
multithreaded guideline unit. The SM transparently deals with any dissimi-
larity in the execution of strings in a twist. This SIMT structural planning
permits the equipment to attain generous efciencies while executing non-
disparate information- parallel the CUDA parallel programming model. As
their name infers, Gpus (Graphics Processing Units) happened as quickening

28

agents for representation provisions, prevalently those utilizing the Opengl
and Directx programming interfaces. Because of the huge parallelism in-
alienable in design, Gpus have long been enormously parallel machines. In
spite of the fact that they were initially simply xed-capacity gadgets, Gpus
have quickly advanced into progressively exible programmable professional-
cessors. Cutting edge NVIDIA Gpusstarting with the Geforce 8800 GTXare
completely programmable manycore chips manufactured around a cluster of
parallel processors [9], as represented in Figure 1. The GPU comprises of a
show of SM multiprocessors, each of which is equipped for supporting up to
1024 co-occupant simultaneous strings. NVIDIA’s present items extend in
size from 1 SM at the low end to 30 Sms at the high end. A solitary SM
demonstrated in Figure 1 holds 8 scalar SP processors, each with 1024 32-bit
registers, for what added up to 64kb of register space for every SM. Every
SM is likewise outfitted with a 16kb on-chip memory that has low get to
idleness and high transfer speed, like a L1 cache.

All string administration, including creation, booking, and hindrance syn-
chronization is performed altogether in fittings by the SM with basically zero
overhead. To efciently deal with its expansive string populace, the SM uti-
lizes a SIMT (Single Instruction, Multiple Thread) structural engineering.
Strings are executed in gatherings of 32 called twists. The strings of a twist
are executed on partitioned scalar processors which impart a solitary multi-
threaded guideline unit. The SM transparently deals with any dissimilarity
in the execution of strings in a twist. This SIMT structural planning permits
the equipment to attain generous efciencies while executing non-disparate
information- parallel codes. CUDA gives the intends to designers to exe-
cute parallel projects on the GPU. In the CUDA expert- gramming model,
a provision is composed into a successive host program that may execute
parallel projects, alluded to as parts, on a parallel gadget. Commonly, the
host project executes on the CPU and the parallel bits execute on the GPU,
despite the fact that CUDA parts might likewise be ordered for efcient execu-
tion on multicore Cpus. A piece is a SPMD-style (Single Program, Multiple
Data) processing, executing a scalar successive program over a set of parallel
strings. The developer arranges these strings into string obstructs; a part
in this manner comprises of a framework of one or more squares. A string
piece is a gathering of simultaneous strings that can chip in around them-
selves through obstruction syn- chronization and a for every-square imparted
memory space private to that square. At the point when summoning a bit,
the developer species both the amount of pieces and the amount of strings
for every square to be made when propelling the bit. The string pieces of a

29

CUDA part basically virtualize the SM multiprocessors of the physical GPU.
We can think about each one string piece as a virtual multiprocessor where
each one string has a xed register foot shaped impression and each one square
has a xed distribution of for every-square shared memory.

3.2.4 Conclusion

Through our research we have concluded that GPU has several aspects that
operate better than the CPU that are stated below categorically

• With graphics processor technology, CPU systems can more efficiently
perform during complex work that does not need to be done in se-
quence. The CPU takes any sequential tasks in the application and
executes them in a typical serial fashion while the GPU runs all of the
computationally-intensive work.

• Due to their established commercial use, they are readily available and
relatively inexpensive compared to the number of multi-core CPUs we
would have needed to achieve a similar number of cores.

• GPUs are effective at performing rapid calculations due to their pipeline,
which allows up to 320 calculations at the same time on a single GPU.
The CPU can do parallel computations, but this is limited by the num-
ber of cores available. GPUs also have a larger bus width which makes
their memory faster.

• It is becoming increasingly common to use a general purpose graphics
processing unit as a modified form of stream processor. This concept
turns the massive computational power of a modern graphics accelera-
tor’s shader pipeline into general-purpose computing power, as opposed
to being hard wired solely to do graphical operations. In certain ap-
plications requiring massive vector operations, this can yield several
orders of magnitude higher performance than a conventional CPU.

We have implemented Radix sort on the GPU and cross checked
the results with the running time on a CPU and noted that the GPU
indeed performs the operation manifolds faster. The graph showing the
comparison of clock cycles taken is presented below.

30

Figure 3.8: Graph For Sorting on GPU

31

References

[1] L. Oliker M. Wehner and J. Shalf. A real cloud computer. IEEE Spec-
trum, 46(10):24 29, 2009.

[2] Terms Standards Coordinating Committee 10 and Definitions. The ieee
standard dictionary ofelectrical and electronics terms. IEEE Spectrum,
1996.

[3] Yu Lin Vilas Jagannath, Matt Kirn and Darko Marinov. Evaluating
machine-independent metrics for state-space exploration. Fifth Inter-
national Conference on Software Testing, Verification and Validation,
2012.

[4] Oracle Inc. The java virtual machine specification. 7th Edition, 2013.

[5] Fayez Gabeli. Algorithm and parallel computing. Willey Publication,
1st Edition:16–22, 2011.

[6] J.L. Gustafson . Reevaluating amdahl s law . Communications of the
ACM,, pp:532–533, 1988.

[7] S. Casselman. Fpga-based hardware acceleration of c/c++ based appli-
cations. http://www.pldesignline.com/howto/201201188 (1997).,.

[8] G. Angelopoulos and Pitas. algorithms on a hypercube. in proc. parallel
computing action,. Workshop ISPRA (1990).

[9] Lewis P. Cooley, J. and P Welch. The fast fourier transform and its
application to time series analysis. John Wiley and Sons, New York,,
pp, 1977.

[10] Voronenko Y. Franchetti, F. and M. Puschel. Fft program generation for
shared memory: Smp and multicore. In Proceedings Of The ACM/IEEE
2006 Conference on Supercomputing,, ACM Press.

32

[11] L. Johnsson and D. Cohen. Computational arrays for the discrete fourier
transform.technical report caltechcstr:1981.4168-tr-81. Institute of Tech-
nology, 1981.

33

	Acknowledgements
	Introduction
	Motivation
	Problem Statement and Objective
	Organisation Of The Thesis

	Architecture And Program Design
	Architecture
	Design Consideration
	Choice of Language And Library
	Measuring Benefits
	Speed up factor
	Communication Overhead
	Estimating communication Overhead
	Amdahl's law
	Gustafason's Law

	Implementation and simulations
	Fast Fourier Transformation
	Introduction
	Background
	Algorithm
	Performance Complexity
	Communication Overhead between cores
	Analysis Of Core Utilization
	Conclusion

	Sorting On GPU
	Introduction
	CPU Vs. GPU
	Architecture
	Conclusion

