9 research outputs found

    Profile of tree-related microhabitats in European primary beech-dominated forests

    Full text link
    Tree-related microhabitats (TreMs) are important features for the conservation of biodiversity in forest ecosystems. Although other structural indicators of forest biodiversity have been extensively studied in recent decades, TreMs have often been overlooked, either due to the absence of a consensual definition or a lack of knowledge. Despite the increased number of TreM studies in the last decade, the role of drivers of TreM profile in primary forests and across different geographical regions is still unknown. To evaluate the main drivers of TreM density and diversity, we conducted the first large-scale study of TreMs across European primary forests. We established 146 plots in eight primary forests dominated by European beech (Fagus sylvatica L.) in the Carpathian and Dinaric mountain ranges. Generalized linear mixed effect models were used to test the effect of local plot characteristics and spatial variability on the density and diversity (alpha, beta, and gamma) of TreMs. Total TreM density and diversity were significantly positively related with tree species richness and the proportion of snags. Root mean square tree diameters were significantly related to alpha and gamma diversity of TreMs. Both regions reached similarly high values of total TreM densities and total TreM densities and diversity were not significantly different between the two regionshowever, we observed between the two regions significant differences in the densities of two TreM groups, conks of fungi and epiphytes. The density and diversity of TreMs were very high in beech-dominated mountain primary forests, but their occurrence and diversity was highly variable within the landscapes over relatively short spatial gradients (plot and stand levels). Understanding these profile provides a benchmark for further comparisons, such as with young forest reserves, or for improving forest management practices that promote biodiversity

    Disturbance history is a key driver of tree lifespan in temperate primary forests

    Full text link
    AIMS We examined differences in lifespan among the dominant tree species (spruce (Picea abies (L.) H. Karst.), fir (Abies alba Mill.), beech (Fagus sylvatica L.), and maple (Acer pseudoplatanus L.)) across primary mountain forests of Europe. We ask how disturbance history, lifetime growth patterns, and environmental factors influence lifespan. LOCATIONS Balkan mountains, Carpathian mountains, Dinaric mountains. METHODS Annual ring widths from 20,600 cores from primary forests were used to estimate tree life spans, growth trends, and disturbance history metrics. Mixed models were used to examine speciesspecific differences in lifespan (i.e. defined as species-specific 90th percentiles of age distributions), and how metrics of radial growth, disturbance parameters, and selected environmental factors influence lifespan. RESULTS While only a few beech trees surpassed 500 years, individuals of all four species were older than 400 years. There were significant differences in lifespan among the four species (beech > fir > spruce > maple), indicating life history differentiation in lifespan. Trees were less likely to reach old age in areas affected by more severe disturbance events, whereas individuals that experienced periods of slow growth and multiple episodes of suppression and release were more likely to reach old age. Aside from a weak but significant negative effect of vegetation season temperature on fir and maple lifespan, no other environmental factors included in the analysis influenced lifespan. CONCLUSIONS Our results indicate species-specific biological differences in lifespan, which may play a role in facilitating tree species coexistence in mixed temperate forests. Finally, natural disturbances regimes were a key driver of lifespan, which could have implications for forest dynamics if regimes shift under global change

    Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian Mountains

    Full text link
    Disentangling the importance of developmental vs. environmental drivers of variation in forest biomass is key to predicting the future of forest carbon sequestration. At coarse scales, forest biomass is likely to vary along major climatic and physiographic gradients. Natural disturbance occurs along these broad biophysical gradients, and depending on their extent, severity and frequency, could either amplify or dampen spatial heterogeneity in forest biomass. Here we evaluate spatial variation in the basal area of late-successional Picea abies (L./Karst.) forests across the Carpathian Mountain Range of central Europe and compare the roles of coarse-scale biophysical gradients and natural disturbances in driving that variation across a hierarchy of scales (landscapes, stands, and plots). We inventoried forest composition and structure, and reconstructed disturbance histories using tree cores collected from 472 plots nested within 30 late-successional stands, spanning the Carpathian Mountains (approximately 4.5 degrees of latitude). We used linear mixed-effects models to compare the effect of disturbance regimes and site conditions on stand basal area at three hierarchical scales. We found that the basal area of late-successional Picea abies forests varied across a range of spatial scales, with climatic drivers being most important at coarse scales and natural disturbances acting as the primary driver of forest heterogeneity at fine scales. For instance, the stand-level basal area varied among landscapes, with the highest values (48-68 m2 ha-1) in the warmer southern Carpathian Mountains, and lower values (37-52 m2 ha-1 on average) in cooler areas of the eastern and western Carpathians. Finer-scale variation was driven by local disturbances (mainly bark beetle and windstorms) and the legacies of disturbances that occurred more than a century ago. Our findings suggest that warming could increase the basal area of northern sites, but potential increasing disturbances could disrupt these environmental responses

    Response of habitat quality to mixed severity disturbance regime in Norway spruce forests

    Full text link
    Natural disturbances change forest habitat quality for many species. As the extent and intensity of natural disturbances may increase under climate change, it is unclear how this increase can affect habitat quality on different spatial scales. To support management tools and policies aiming to prevent habitat loss, we studied how habitat quality develops in the long run depending on the disturbance severity using a space-for-time substitution approach. We explored the effects of time since disturbance (0 - 250 years) and disturbance severity (20 – 100 % canopy removal) on structure-based habitat quality indicators in European primary Norway spruce (Picea abies) forests using 1000 m2 circular plots in hierarchical design (a total of 407 plots in 35 stands). Disturbance history was reconstructed from tree cores. Habitat quality indicators were modelled as a function of the severity of the most severe disturbance and the time since this disturbance. We hypothesised that high within-stand habitat heterogeneity is formed by different successional stages after disturbances of various intensities. The results showed the U-shaped response of habitat quality to post-disturbance habitat succession on the plot scale. The decline deepened with disturbance severity. The U-shape response occurred in: large tree occurrence, amount of standing and lying deadwood, diversity of understory, and understory openness. The spatial diversity in disturbance parameters increased spatial diversity of habitat quality on a stand level as expected. This high within-stand habitat heterogeneity also decreased with increasing age of the most recent disturbance. This suggests that the absence of young successional stages results in the absence of some important elements for biodiversity, e.g. sun-exposed snags. Synthesis and applications. Our results demonstrate that currently intensifying natural disturbance regime can consequently result in a lower habitat heterogeneity. In managed spruce forests after natural disturbances we recommend at least the partial retention of biological legacies to preserve habitat heterogeneity and to avoid uniform and dense plantations resulting in a greater homogenisation. To emulate the natural disturbances pattern, spruce forests should be managed with a wide range of harvested patches of the size limited by a local natural disturbance regime creating spatial heterogeneity

    Importance of conserving large and old trees to continuity of tree‐related microhabitats

    No full text
    International audienceProtecting structural features, such as tree-related microhabitats (TreMs), is a cost-effective tool crucial for biodiversity conservation applicable to large forested landscapes. Although the development of TreMs is influenced by tree diameter, species, and vitality, the relationships between tree age and TreM profile remain poorly understood. Using a tree-ring-based approach and a large data set of 8038 trees, we modeled the effects of tree age, diameter, and site characteristics on TreM richness and occurrence across some of the most intact primary temperate forests in Europe, including mixed beech and spruce forests. We observed an overall increase in TreM richness on old and large trees in both forest types. The occurrence of specific TreM groups was variably related to tree age and diameter, but some TreM groups (e.g., epiphytes) had a stronger positive relationship with tree species and elevation. Although many TreM groups were positively associated with tree age and diameter, only two TreM groups in spruce stands reacted exclusively to tree age (insect galleries and exposed sapwood) without responding to diameter. Thus, the retention of trees for conservation purposes based on tree diameter appears to be a generally feasible approach with a rather low risk of underrepresentation of TreMs. Because greater tree age and diameter positively affected TreM development, placing a greater emphasis on conserving large trees and allowing them to reach older ages, for example, through the establishment of conservation reserves, would better maintain the continuity of TreM resource and associated biodiversity. However, this approach may be difficult due to the widespread intensification of forest management and global climate change

    Disturbance history is a key driver of tree life span in temperate primary forests

    No full text
    Aims We examined differences in life span among the dominant tree species (spruce, Picea abies; fir, Abies alba; beech, Fagus sylvatica; and maple, Acer pseudoplatanus) across primary mountain forests of Europe. We asked how disturbance history, lifetime growth patterns, and environmental factors influence life span. Locations Balkan Mountains, Carpathian Mountains, Dinaric Mountains. Methods Annual ring widths from 20,600 cores from primary forests were used to estimate tree life spans, growth trends, and disturbance history metrics. Mixed models were used to examine species-specific differences in life span (i.e., defined as species-specific 90th percentiles of age distributions), and how metrics of radial growth, disturbance parameters, and selected environmental factors influence life span. Results While only a few beech trees surpassed 500 years, individuals of all four species were older than 400 years. There were significant differences in life span among the four species (beech > fir > spruce > maple), indicating life history differentiation in life span. Trees were less likely to reach old age in areas affected by more severe disturbance events, whereas individuals that experienced periods of slow growth and multiple episodes of suppression and release were more likely to reach old age. Aside from a weak but significant negative effect of vegetation season temperature on fir and maple life span, no other environmental factors included in the analysis influenced life span. Conclusions Our results indicate species-specific biological differences in life span, which may play a role in facilitating tree species coexistence in mixed temperate forests. Finally, natural disturbance regimes were a key driver of life span, which could have implications for forest dynamics if regimes shift under global change.ISSN:1100-9233ISSN:1654-110
    corecore