1,560 research outputs found

    The Role of UPF0157 in the Folding of M. tuberculosis Dephosphocoenzyme A Kinase and the Regulation of the Latter by CTP

    Get PDF
    BACKGROUND:Targeting the biosynthetic pathway of Coenzyme A (CoA) for drug development will compromise multiple cellular functions of the tubercular pathogen simultaneously. Structural divergence in the organization of the penultimate and final enzymes of CoA biosynthesis in the host and pathogen and the differences in their regulation mark out the final enzyme, dephosphocoenzyme A kinase (CoaE) as a potential drug target. METHODOLOGY/PRINCIPAL FINDINGS:We report here a complete biochemical and biophysical characterization of the M. tuberculosis CoaE, an enzyme essential for the pathogen's survival, elucidating for the first time the interactions of a dephosphocoenzyme A kinase with its substrates, dephosphocoenzyme A and ATP; its product, CoA and an intrinsic yet novel inhibitor, CTP, which helps modulate the enzyme's kinetic capabilities providing interesting insights into the regulation of CoaE activity. We show that the mycobacterial enzyme is almost 21 times more catalytically proficient than its counterparts in other prokaryotes. ITC measurements illustrate that the enzyme follows an ordered mechanism of substrate addition with DCoA as the leading substrate and ATP following in tow. Kinetic and ITC experiments demonstrate that though CTP binds strongly to the enzyme, it is unable to participate in DCoA phosphorylation. We report that CTP actually inhibits the enzyme by decreasing its Vmax. Not surprisingly, a structural homology search for the modeled mycobacterial CoaE picks up cytidylmonophosphate kinases, deoxycytidine kinases, and cytidylate kinases as close homologs. Docking of DCoA and CTP to CoaE shows that both ligands bind at the same site, their interactions being stabilized by 26 and 28 hydrogen bonds respectively. We have also assigned a role for the universal Unknown Protein Family 0157 (UPF0157) domain in the mycobacterial CoaE in the proper folding of the full length enzyme. CONCLUSIONS/SIGNIFICANCE:In view of the evidence presented, it is imperative to assign a greater role to the last enzyme of Coenzyme A biosynthesis in metabolite flow regulation through this critical biosynthetic pathway

    Insights into the Regulatory Characteristics of the Mycobacterial Dephosphocoenzyme A Kinase: Implications for the Universal CoA Biosynthesis Pathway

    Get PDF
    Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA)

    Vitalism in Early Modern Medical and Philosophical Thought

    Get PDF
    Vitalism is a notoriously deceptive term. It is very often defined as the view, in biology, in early modern medicine and differently, in early modern philosophy, that living beings differ from the rest of the physical universe due to their possessing an additional ‘life-force’, ‘vital principle’, ‘entelechy’, enormon or élan vital. Such definitions most often have an explicit pejorative dimension: vitalism is a primitive or archaic view, that has somehow survived the emergence of modern science (the latter being defined in many different ways, from demystified Cartesian reductionism to experimental medicine, biochemistry or genetics: Cimino and Duchesneau eds. 1997, Normandin and Wolfe eds. 2013). Such dismissive definitions of vitalism are meant to dispense with argument or analysis. Curiously, the term has gained some popularity in English-language scholarship on early modern philosophy in the past few decades, where it is used without any pejorative dimension, to refer to a kind of ‘active matter’ view, in which matter is not reducible to the (mechanistic) properties of size, shape and motion, possessing instead some internal dynamism or activity (see e.g. James 1999, Boyle 2018, Borcherding forthcoming). The latter meaning is close to what the Cambridge Platonist Ralph Cudworth termed ‘hylozoism’, namely the attribution of life, agency or mind to matter, and he implicitly targeted several figures I shall mention here, notably Margaret Cavendish and Francis Glisson, for holding this view. However, one point I shall make in this entry is that when vitalism first appears by name, and as a self-designation, in the Montpellier School (associated with the Faculty of Medicine at the University of Montpellier, in the second half of the eighteenth century; thus vitalisme appears first, followed shortly thereafter by Vitalismus in German, with ‘vitalism’ appearing in English publications only in the early nineteenth century: Toepfer 2011), it is quite different from both the more ‘supernatural’ view described above – chiefly espoused by its rather obsessive opponents – and from the more neutral, but also de-biologized philosophical view (that of e.g. Cavendish or Conway who are, broadly speaking naturalists). Rather than appealing to a metaphysics of vital force, or of self-organizing matter, this version of vitalism, which I shall refer to as ‘medical vitalism’, seems to be more of a ‘systemic’ theory: an attempt to grasp and describe top-level (‘organizational’, ‘organismic’, ‘holistic’) features of living systems (Wolfe 2017, 2019). In this entry I seek to introduce some periodization in our thinking about early modern (and Enlightenment) vitalism, emphasizing the difference between the seventeenth-century context and that of the following generations – culminating in the ideas of the Montpellier School. This periodization should also function as a kind of taxonomy or at least distinction between some basic types of vitalism. As I discuss in closing, these distinctions can cut across the texts and figures we are dealing with, differently: metaphysical vs. non-metaphysical vitalism, philosophical vs. medical vitalism, medical vs. ‘embryological’ vitalism, and so on. A difference I can only mention but not explore in detail is that the more medically grounded, ‘organismic’ vitalism is significantly post-Cartesian while the more biological/embryological vitalism is, inasmuch as it is a dynamic, self-organizing matter theory, an extension of Renaissance ideas (chymiatry, Galenism and in general theories of medical spirits). I examine successively vitalism’s Renaissance prehistory, its proliferation as ‘vital matter theory’ in seventeenth-century England (in authors such as Cavendish, Conway and Glisson, with brief considerations on Harvey and van Helmont), and its mature expression in eighteenth-century Montpellier (notably with Bordeu and Ménuret de Chambaud)

    What we talk about when we talk about "global mindset": managerial cognition in multinational corporations

    Get PDF
    Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as “global mindset” that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research

    A combined VANDELS and LEGA-C study: the evolution of quiescent galaxy size, stellar mass, and age from z = 0.6 to z = 1.3

    Get PDF
    We study the relationships between stellar mass, size, and age within the quiescent population, using two mass-complete spectroscopic samples with log10(M⊙/M⊙) > 10.3, taken from VANDELS at 1.0 < z < 1.3, and LEGA-C at 0.6 < z < 0.8. Using robust Dn4000 values, we demonstrate that the well-known 'downsizing' signature is already in place by z 1.1, with Dn4000 increasing by 0.1 across a 1 dex mass interval for both VANDELS and LEGA-C. We then proceed to investigate the evolution of the quiescent galaxy stellar mass-size relation from z -1.1 to z -0.7. We find the median size increases by a factor of 1.9 ± 0.1 at log10(M⊙/M⊙) = 10.5, and see tentative evidence for flattening of the relation, finding slopes of α = 0.72 ± 0.06 and α =\0.56\pm 0.04 for VANDELS and LEGA-C, respectively. We finally split our sample into galaxies above and below our fitted mass-size relations, to investigate how size and Dn4000 correlate. For LEGA-C, we see a clear difference, with larger galaxies found to have smaller Dn4000 at fixed stellar mass. Due to the faintness and smaller numbers of the VANDELS sample, we cannot confirm whether a similar relation exists at z -1.1. We consider whether differences in stellar age or metallicity are most likely to drive this size-Dn4000 relation, finding that any metallicity differences are unlikely to fully explain the observed offset, meaning smaller galaxies must be older than their larger counterparts. We find the observed evolution in size, mass, and Dn4000 across the -2 Gyr from z ∼1.1 to z ∼0.7 can be explained by a simple toy model in which VANDELS galaxies evolve passively whilst experiencing a series of minor mergers

    A combined VANDELS and LEGA-C study: the evolution of quiescent galaxy size, stellar mass, and age from z = 0.6 to z = 1.3

    Get PDF
    We study the relationships between stellar mass, size and age within the quiescent population, using two mass-complete spectroscopic samples with log10(M/M)>10.3\mathrm{log_{10}}(M_{\star}/\mathrm{M_{\odot}})>10.3, taken from VANDELS at 1.0<z<1.31.0<z<1.3, and LEGA-C at 0.6<z<0.80.6<z<0.8. Using robust Dn_{n}4000 values, we demonstrate that the well-known 'downsizing' signature is already in place by z1.1z\simeq1.1, with Dn_{n}4000 increasing by 0.1\simeq0.1 across a \simeq 1 dex mass interval for both VANDELS and LEGA-C. We then proceed to investigate the evolution of the quiescent galaxy stellar mass-size relation from z1.1z\simeq1.1 to z0.7z\simeq0.7. We find the median size increases by a factor of 1.9±0.11.9\pm{0.1} at log10(M/M)=10.5\mathrm{log_{10}}(M_{\star}/\mathrm{M_{\odot}})=10.5, and see tentative evidence for flattening of the relation, finding slopes of α=0.72±0.06\alpha=0.72\pm0.06 and α=\alpha= 0.56±0.040.56\pm0.04 for VANDELS and LEGA-C respectively. We finally split our sample into galaxies above and below our fitted mass-size relations, to investigate how size and Dn_{n}4000 correlate. For LEGA-C, we see a clear difference, with larger galaxies found to have smaller Dn_{n}4000 at fixed stellar mass. Due to the faintness and smaller numbers of the VANDELS sample, we cannot confirm whether a similar relation exists at z1.1z\simeq1.1. We consider whether differences in stellar age or metallicity are most likely to drive this size-Dn_{n}4000 relation, finding that any metallicity differences are unlikely to fully explain the observed offset, meaning smaller galaxies must be older than their larger counterparts. We find the observed evolution in size, mass and Dn_{n}4000 across the 2\simeq2 Gyr from z1.1z\sim1.1 to z0.7z\sim0.7 can be explained by a simple toy model in which VANDELS galaxies evolve passively, whilst experiencing a series of minor mergers.Comment: 14 pages, 9 figures, submitted to MNRA

    Preparation of amino-substituted indenes and 1,4-dihydronaphthalenes using a one-pot multireaction approach: total synthesis of oxybenzo[c]phenanthridine alkaloids

    Get PDF
    Allylic trichloroacetimidates bearing a 2-vinyl or 2-allylaryl group have been designed as substrates for a one-pot, two-step multi-bond-forming process leading to the general preparation of aminoindenes and amino-substituted 1,4-dihydronaphthalenes. The synthetic utility of the privileged structures formed from this one-pot process was demonstrated with the total synthesis of four oxybenzo[c]phenanthridine alkaloids, oxychelerythrine, oxysanguinarine, oxynitidine, and oxyavicine. An intramolecular biaryl Heck coupling reaction, catalyzed using the Hermann–Beller palladacycle was used to effect the key step during the synthesis of the natural products

    Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection

    Get PDF
    Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber
    corecore