7 research outputs found

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    An Evaluation of Methods for Identifying and Interpreting Buried Soils in Late Quaternary Loess in Alaska

    Get PDF
    The presence of buried soils in Alaskan loess is controversial, and therefore criteria for identifying buried soils in these deposits need to be evaluated. In this paper, morphologic and chemical criteria for identifying buried soils are evaluated by studying modern soils developed mostly in Holocene loess under tundra, boreal forest, and transitional coastal-boreal forest vegetation in different parts of Alaska. Data from modern Alaskan soils that developed under vegetation similar to that of the present indicate that soil morphology, organic-matter concentrations, and P concentrations can be useful diagnostic tools for identifying buried soils. Soil morphologic criteria, particularly horizon colors and horizon sequences, are essential for identifying buried soils, but some minimally developed soils may resemble organic-rich alluvial, colluvial, or lacustrine deposits. Organic matter and total P contents and distributions can aid in such studies because in well-drained soils these constituents show rapid declines with depth. However, neither of these techniques may work if the upper genetic horizons of buried soils are eroded. If buried soils are present in Alaskan loess, it would also be desirable to have techniques for determining the dominant vegetation under which the soils formed. Such techniques could then be used to reconstruct former vegetation types and paleoclimates in Alaska. A previous study suggested that tundra and boreal forest vegetation have distinctive carbon isotopic compositions, although both are dominated by C3 plants. If this is the case, then the carbon isotopic composition of organic matter in buried soils could be used to reconstruct former vegetation types. A larger suite of modern soils from Alaskan tundra and forest were analyzed to test this hypothesis. Results indicate that modern soil O horizons in these two biomes have the same range of δ13C values, and therefore carbon isotope compositions cannot be used to reconstruct former tundra or boreal forest

    Stratigraphy and palaeoclimatic significance of Late Quaternary loess–palaeosol sequences of the Last Interglacial–Glacial cycle in central Alaska

    Get PDF
    Loess is one of the most widespread subaerialdeposits in Alaska and adjacent Yukon Territory and may have a history that goes back 3 Ma. Based on mineralogy and major and trace element chemistry, central Alaskan loess has a composition that is distinctive from other loess bodies of the world, although it is quartz-dominated. Central Alaskan loess was probably derived from a variety of rock types, including granites, metabasalts and schists. Detailed stratigraphic data and pedologic criteria indicate that, contrary to early studies, many palaeosols are present in central Alaskan loess sections. The buried soils indicate that loess sedimentation was episodic, or at least rates of deposition decreased to the point where pedogenesis could keep ahead of aeolian input. As in China, loess deposition and pedogenesis are likely competing processes and neither stops completely during either phase of the loess/soil formation cycle. Loess deposition in central Alaska took place before, and probably during the last interglacial period, during stadials of the mid-Wisconsin period, during the last glacial period and during the Holocene. An unexpected result of our geochronological studies is that only moderate loess deposition took place during the last glacial period. Our studies lead us to conclude that vegetation plays a key role in loess accumulation in Alaska. Factors favouring loess production are enhanced during glacial periods but factors that favour loess accumulation are diminished during glacial periods. The most important of these is vegetation; boreal forest serves as an effective loess trap, but sparsely distributed herb tundra does not. Thus, thick accumulations of loess should not be expected where tundra vegetation was dominant and this is borne out by modern studies near the treeline in central Alaska. Much of the stratigraphic diversity of North American loess, including that found in the Central Lowlands, the Great Plains, and Alaska is explained by a new model that emphasizes the relative importance of loess production factors versus loess accumulation factors

    The Evolution of Zoning Since the 1980s: The Persistence of Localism

    No full text
    corecore