12 research outputs found

    Plasma physics and control studies planned in JT-60SA for ITER and DEMO operations and risk mitigation

    Get PDF
    | openaire: EC/H2020/633053/EU//EUROfusionA large superconducting machine, JT-60SA has been constructed to provide major contributions to the ITER program and DEMO design. For the success of the ITER project and fusion reactor, understanding and development of plasma controllability in ITER and DEMO relevant higher beta regimes are essential. JT-60SA has focused the program on the plasma controllability for scenario development and risk mitigation in ITER as well as on investigating DEMO relevant regimes. This paper summarizes the high research priorities and strategy for the JT-60SA project. Recent works on simulation studies to prepare the plasma physics and control experiments are presented, such as plasma breakdown and equilibrium controls, hybrid and steady-state scenario development, and risk mitigation techniques. Contributions of JT-60SA to ITER and DEMO have been clarified through those studies.Peer reviewe

    Impact of shaping on microstability in high-performance tokamak plasmas

    No full text
    We have used the local-ÎŽf gyrokinetic code GS2 to perform studies of the effect of flux-surface shaping on two highly-shaped, low- and high-ÎČ JT-60SA-relevant equilibria, including a successful benchmark with the GKV code. We find that for a high-performance plasma, i.e. one with high plasma beta and steep pressure gradients, the turbulent outwards radial fluxes may be reduced by minimizing the elongation. We explain the results as a competition between the local magnetic shear and finite-Larmor-radius (FLR) stabilization. Electromagnetic studies indicate that kinetic ballooning modes are stabilized by increased shaping due to an increased sensitivity to FLR effects, relative to the ion-temperature-gradient instability. Nevertheless, at high enough ÎČ, increased elongation degrades the local magnetic shear stabilization that enables access to the region of ballooning second-stability

    Impact of shaping on microstability in high-performance tokamak plasmas

    No full text
    We have used the local-ÎŽf gyrokinetic code GS2 to perform studies of the effect of flux-surface shaping on two highly-shaped, low- and high-ÎČ JT-60SA-relevant equilibria, including a successful benchmark with the GKV code. We find that for a high-performance plasma, i.e. one with high plasma beta and steep pressure gradients, the turbulent outwards radial fluxes may be reduced by minimizing the elongation. We explain the results as a competition between the local magnetic shear and finite-Larmor-radius (FLR) stabilization. Electromagnetic studies indicate that kinetic ballooning modes are stabilized by increased shaping due to an increased sensitivity to FLR effects, relative to the ion-temperature-gradient instability. Nevertheless, at high enough ÎČ, increased elongation degrades the local magnetic shear stabilization that enables access to the region of ballooning second-stability

    Level structure above the 17(+) isomeric state in Tm-152(69)83

    Get PDF
    Excited states above the 17(+) isomeric state in the proton-rich nucleus Tm-152 were established by employing the recoil-isomer tagging technique. Data were collected using the JUROGAM gamma-ray array and the GREAT spectrometer together with the recoil ion transport unit (RITU) gas-filled recoil separator and analyzed to identify the prompt and delayed gamma decays from the levels in Tm-152. Shell-model calculations, either in a large valence space or in a reduced model space with five protons in the pi 0h(11)(/2) orbital and one neutron in the nu 1 f(7/2) orbital, agree with the observed energies of the yrast levels up to angular momentum J = 21. The observation of near degeneracies in the energy spectrum can be attributed to specific components of the proton-neutron interaction. The isomeric decay of the 17(+) level is not reproduced in the shell-model calculations as it arises from a delicate balance between hindrance due to seniority selection rules and enhancement due to configuration mixing.Peer reviewe

    Level structure above the 17âș isomeric state in Âč⁔ÂČ₆₉Tm₈₃

    No full text
    Abstract Excited states above the 17âș isomeric state in the proton-rich nucleus Âč⁔ÂČTm were established by employing the recoil-isomer tagging technique. Data were collected using the JUROGAM gamma-ray array and the GREAT spectrometer together with the recoil ion transport unit (RITU) gas-filled recoil separator and analyzed to identify the prompt and delayed Îł decays from the levels in Âč⁔ÂČTm. Shell-model calculations, either in a large valence space or in a reduced model space with five protons in the π0h₁₁/₂ orbital and one neutron in the Îœ1f₇/₂ orbital, agree with the observed energies of the yrast levels up to angular momentum J = 21. The observation of near degeneracies in the energy spectrum can be attributed to specific components of the proton-neutron interaction. The isomeric decay of the 17âș level is not reproduced in the shell-model calculations as it arises from a delicate balance between hindrance due to seniority selection rules and enhancement due to configuration mixing

    Advances in the physics studies for the JT-60SA tokamak exploitation and research plan

    No full text
    | openaire: EC/H2020/633053/EU//EUROfusionJT-60SA, the largest tokamak that will operate before ITER, has been designed and built jointly by Japan and Europe, and is due to start operation in 2020. Its main missions are to support ITER exploitation and to contribute to the demonstration fusion reactor machine and scenario design. Peculiar properties of JT-60SA are its capability to produce long-pulse, high-ÎČ, and highly shaped plasmas. The preparation of the JT-60SA Research Plan, plasma scenarios, and exploitation are producing physics results that are not only relevant to future JT-60SA experiments, but often constitute original contributions to plasma physics and fusion research. Results of this kind are presented in this paper, in particular in the areas of fast ion physics, high-beta plasma properties and control, and non-linear edge localised mode stability studies.Peer reviewe

    Advances in the physics studies for the JT-60SA tokamak exploitation and research plan

    No full text

    Advances in the physics studies for the JT-60SA tokamak exploitation and research plan

    No full text
    JT-60SA, the largest tokamak that will operate before ITER, has been designed and built jointly by Japan and Europe, and is due to start operation in 2020. Its main missions are to support ITER exploitation and to contribute to the demonstration fusion reactor machine and scenario design. Peculiar properties of JT-60SA are its capability to produce long-pulse, high-), and highly shaped plasmas. The preparation of the JT-60SA Research Plan, plasma scenarios, and exploitation are producing physics results that are not only relevant to future JT-60SA experiments, but often constitute original contributions to plasma physics and fusion research. Results of this kind are presented in this paper, in particular in the areas of fast ion physics, high-beta plasma properties and control, and non-linear edge localised mode stability studies

    Plasma physics and control studies planned in JT-60SA for ITER and DEMO operations and risk mitigation

    No full text
    | openaire: EC/H2020/633053/EU//EUROfusionA large superconducting machine, JT-60SA has been constructed to provide major contributions to the ITER program and DEMO design. For the success of the ITER project and fusion reactor, understanding and development of plasma controllability in ITER and DEMO relevant higher beta regimes are essential. JT-60SA has focused the program on the plasma controllability for scenario development and risk mitigation in ITER as well as on investigating DEMO relevant regimes. This paper summarizes the high research priorities and strategy for the JT-60SA project. Recent works on simulation studies to prepare the plasma physics and control experiments are presented, such as plasma breakdown and equilibrium controls, hybrid and steady-state scenario development, and risk mitigation techniques. Contributions of JT-60SA to ITER and DEMO have been clarified through those studies.Peer reviewe
    corecore